Do you want to publish a course? Click here

As ISPs begin to cooperate to expose their network locality information as services, e.g., P4P, solutions based on locality information provision for P2P traffic localization will soon approach their capability limits. A natural question is: can we do any better provided that no further locality information improvement can be made? This paper shows how the utility of locality information could be limited by conventional P2P data scheduling algorithms, even as sophisticated as the local rarest first policy. Network codings simplified data scheduling makes it competent for improving P2P applications throughput. Instead of only using locality information in the topology construction, this paper proposes the locality-aware network coding (LANC) that uses locality information in both the topology construction and downloading decision, and demonstrates its exceptional ability for P2P traffic localization. The randomization introduced by network coding enhances the chance for a peer to find innovative blocks in its neighborhood. Aided by proper locality-awareness, the probability for a peer to get innovative blocks from its proximity will increase as well, resulting in more efficient use of network resources. Extensive simulation results show that LANC can significantly reduce P2P traffic redundancy without sacrificing application-level performance. Aided by the same locality knowledge, the traffic redundancies of LANC in most cases are less than 50% of the current best approach that does not use network coding.
In this paper we investigate the evolution of the IPv4 and IPv6 Internet topologies at the autonomous system (AS) level over a long period of time.We provide abundant empirical evidence that there is a phase transition in the growth trend of the two networks. For the IPv4 network, the phase change occurred in 2001. Before then the networks size grew exponentially, and thereafter it followed a linear growth. Changes are also observed around the same time for the maximum node degree, the average node degree and the average shortest path length. For the IPv6 network, the phase change occurred in late 2006. It is notable that the observed phase transitions in the two networks are different, for example the size of IPv6 network initially grew linearly and then shifted to an exponential growth. Our results show that following decades of rapid expansion up to the beginning of this century, the IPv4 network has now evolved into a mature, steady stage characterised by a relatively slow growth with a stable network structure; whereas the IPv6 network, after a slow startup process, has just taken off to a full speed growth. We also provide insight into the possible impact of IPv6-over-IPv4 tunneling deployment scheme on the evolution of the IPv6 network. The Internet topology generators so far are based on an inexplicit assumption that the evolution of Internet follows non-changing dynamic mechanisms. This assumption, however, is invalidated by our results.Our work reveals insights into the Internet evolution and provides inputs to future AS-Level Internet models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا