Do you want to publish a course? Click here

We construct rolling tachyon solutions of open and boundary string field theory (OSFT and BSFT, respectively), in the bosonic and supersymmetric (susy) case. The wildly oscillating solution of susy OSFT is recovered, together with a family of time-dependent BSFT solutions for the bosonic and susy string. These are parametrized by an arbitrary constant r involved in solving the Green equation of the target fields. When r=0 we recover previous results in BSFT, whereas for r attaining the value predicted by OSFT it is shown that the bosonic OSFT solution is the derivative of the boundary one; in the supersymmetric case the relation between the two solutions is more complicated. This technical correspondence sheds some light on the nature of wild oscillations, which appear in both theories whenever r>0.
We show that a certain class of nonlocal scalar models, with a kinetic operator inspired by string field theory, is equivalent to a system which is local in the coordinates but nonlocal in an auxiliary evolution variable. This system admits both Lagrangian and Hamiltonian formulations, and its Cauchy problem and quantization are well-defined. We classify exact nonperturbative solutions of the localized model which can be found via the diffusion equation governing the fields.
An analytic approach to phenomenological models inspired by cubic string field theory is introduced and applied to some examples. We study a class of actions for a minimally coupled, homogeneous scalar field whose energy density contains infinitely many time derivatives. These nonlocal systems are systematically localized and an algorithm to find cosmological solutions of the dynamical equations is provided. Our formalism is able to define the nonlocal field in regions of the parameter space which are inaccessible by standard methods. Also, problems related to nonlocality are reinterpreted under a novel perspective and naturally overcome. We consider phenomenological models living on a Friedmann-Robertson-Walker background with power-law scale factor, both in four dimensions and on a high-energy braneworld. The quest for solutions unravels general features of nonlocal dynamics indicating several future directions of investigation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا