Do you want to publish a course? Click here

155 - J. Nunn , B. J. Smith , G. Puentes 2009
Given an experimental set-up and a fixed number of measurements, how should one take data in order to optimally reconstruct the state of a quantum system? The problem of optimal experiment design (OED) for quantum state tomography was first broached by Kosut et al. [arXiv:quant-ph/0411093v1]. Here we provide efficient numerical algorithms for finding the optimal design, and analytic results for the case of minimal tomography. We also introduce the average OED, which is independent of the state to be reconstructed, and the optimal design for tomography (ODT), which minimizes tomographic bias. We find that these two designs are generally similar. Monte-Carlo simulations confirm the utility of our results for qubits. Finally, we adapt our approach to deal with constrained techniques such as maximum likelihood estimation. We find that these are less amenable to optimization than cruder reconstruction methods, such as linear inversion.
254 - G. Puentes , A. Datta , A. Feito 2009
The certificate of success for a number of important quantum information processing protocols, such as entanglement distillation, is based on the difference in the entanglement content of the quantum states before and after the protocol. In such cases, effective bounds need to be placed on the entanglement of non-local states consistent with statistics obtained from local measurements. In this work, we study numerically the ability of a novel type of homodyne detector which combines phase sensitivity and photon-number resolution to set accurate bounds on the entanglement content of two-mode quadrature squeezed states without the need for full state tomography. We show that it is possible to set tight lower bounds on the entanglement of a family of two-mode degaussified states using only a few measurements. This presents a significant improvement over the resource requirements for the experimental demonstration of continuous-variable entanglement distillation, which traditionally relies on full quantum state tomography.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا