Do you want to publish a course? Click here

189 - A. Dixit , G. Lawes , A.B. Harris 2010
We have investigated the magnetoelectric and magnetodielectric response in FeVO$_4$, which exhibits a change in magnetic structure coincident with ferroelectric ordering at $T_{N2}$$approx$15 K. Using symmetry considerations, we construct a model for the possible magnetoelectric coupling in this system, and present a discussion of the allowed spin structures in FeVO$_4$. Based on this model, in which the spontaneous polarization is caused by a trilinear spin-phonon interaction, we experimentally explore the magnetoelectric coupling in FeVO$_4$ thin films through measurements of the electric field induced shift of the multiferroic phase transition temperature, which exhibits an increase of 0.25 K in an applied field of 4 MV/m. The strong spin-charge coupling in fvo, is also reflected in the significant magnetodielectric shift, which is present in the paramagnetic phase due to a quartic spin-phonon interaction and shows a marked enhancement with the onset of magnetic order which we attribute to the trilinear spin-phonon interaction. We observe a clear magnetic field induced dielectric anomaly at lower temperatures, distinct from the sharp peak associated with the multiferroic transition, which we tentatively assign to a spin reorientation cross-over. We also present a magnetoelectric phase diagram for FeVO$_4$.
Electric control of multiferroic domains is demonstrated through polarized magnetic neutron diffraction. Cooling to the cycloidal multiferroic phase of Ni3V2O8 in an electric field (E) causes the incommensurate Bragg reflections to become neutron spin polarizing, the sense of neutron polarization reversing with E. Quantitative analysis indicates the E-treated sample has handedness that can be reversed by E. We further show close association between cycloidal and ferroelectric domains through E-driven spin and electric polarization hysteresis. We suggest that definite cycloidal handedness is achieved through magneto-elastically induced Dzyaloshinskii-Moriya interactions.
145 - G. Lawes , T. Kimura , C.M. Varma 2009
The coupling between localized spins and phonons can lead to shifts in the dielectric constant of insulating materials at magnetic ordering transitions. Studies on isostructural SeCuO3 (ferromagnetic) and TeCuO3 (antiferromagnetic) illustrate how the q-dependent spin-spin correlation function couples to phonon frequencies leading to a shift in the dielectric constant. A model is discussed for this spin-phonon coupling. The magnetodielectric coupling in multiferroic materials can be very large at a ferroelectric transition temperature. This coupling is investigated in the recently identified multiferroic Ni3V2O8.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا