Do you want to publish a course? Click here

VOStat is a Web service providing interactive statistical analysis of astronomical tabular datasets. It is integrated into the suite of analysis and visualization tools associated with the international Virtual Observatory (VO) through the SAMP communication system. A user supplies VOStat with a dataset extracted from the VO, or otherwise acquired, and chooses among $sim 60$ statistical functions. These include data transformations, plots and summaries, density estimation, one- and two-sample hypothesis tests, global and local regressions, multivariate analysis and clustering, spatial analysis, directional statistics, survival analysis (for censored data like upper limits), and time series analysis. The statistical operations are performed using the public domain {bf R} statistical software environment, including a small fraction of its $>4000$ {bf CRAN} add-on packages. The purpose of VOStat is to facilitate a wider range of statistical analyses than are commonly used in astronomy, and to promote use of more advanced methodology in {bf R} and {bf CRAN}.
This review outlines concepts of mathematical statistics, elements of probability theory, hypothesis tests and point estimation for use in the analysis of modern astronomical data. Least squares, maximum likelihood, and Bayesian approaches to statistical inference are treated. Resampling methods, particularly the bootstrap, provide valuable procedures when distributions functions of statistics are not known. Several approaches to model selection and good- ness of fit are considered. Applied statistics relevant to astronomical research are briefly discussed: nonparametric methods for use when little is known about the behavior of the astronomical populations or processes; data smoothing with kernel density estimation and nonparametric regression; unsupervised clustering and supervised classification procedures for multivariate problems; survival analysis for astronomical datasets with nondetections; time- and frequency-domain times series analysis for light curves; and spatial statistics to interpret the spatial distributions of points in low dimensions. Two types of resources are presented: about 40 recommended texts and monographs in various fields of statistics, and the public domain R software system for statistical analysis. Together with its sim 3500 (and growing) add-on CRAN packages, R implements a vast range of statistical procedures in a coherent high-level language with advanced graphics.
Multivariate distributions are explored using the joint distributions of marginal sample quantiles. Limit theory for the mean of a function of order statistics is presented. The results include a multivariate central limit theorem and a strong law of large numbers. A result similar to Bahadurs representation of quantiles is established for the mean of a function of the marginal quantiles. In particular, it is shown that [sqrt{n}Biggl(frac{1}{n}sum_{i=1}^nphibigl(X_{n:i}^{(1)},...,X_{n:i}^{(d)}bigr)-bar{gamma}Biggr)=frac{1}{sqrt{n}}sum_{i=1}^nZ_{n,i}+mathrm{o}_P(1)] as $nrightarrowinfty$, where $bar{gamma}$ is a constant and $Z_{n,i}$ are i.i.d. random variables for each $n$. This leads to the central limit theorem. Weak convergence to a Gaussian process using equicontinuity of functions is indicated. The results are established under very general conditions. These conditions are shown to be satisfied in many commonly occurring situations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا