Do you want to publish a course? Click here

In the microscopic world, multipartite entanglement has been achieved with various types of nanometer sized two-level systems such as trapped ions, atoms and photons. On the macroscopic scale ranging from micrometers to millimeters, recent experiments have demonstrated bipartite and tripartite entanglement for electronic quantum circuits with superconducting Josephson junctions. It remains challenging to bridge these largely different length scales by constructing hybrid quantum systems. Doing this may allow for manipulating the entanglement of individual microscopic objects separated by macroscopically large distances in a quantum circuit. Here we report on the experimental demonstration of induced coherent interaction between two intrinsic two-level states (TLSs) formed by atomic-scale defects in a solid via a superconducting phase qubit. The tunable superconducting circuit serves as a shuttle communicating quantum information between the two microscopic TLSs. We present a detailed comparison between experiment and theory and find excellent agreement over a wide range of parameters. We then use the theoretical model to study the creation and movement of entanglement between the three components of the quantum system.
By measuring the electrical transport properties of superconducting NbN quarter-wave resonators in direct contact with a helium bath, we have demonstrated a high-speed and spatially sensitive sensor for the permittivity of helium. In our implementation a $sim10^{-3}$ mm$^3$ sensing volume is measured with a bandwidth of 300 kHz in the temperature range 1.8 to 8.8 K. The minimum detectable change of the permittivity of helium is calculated to be $sim6times$$10^{-11}$ $epsilon_0$/Hz$^{1/2}$ with a sensitivity of order $10^{-13}$ $epsilon_0$/Hz$^{1/2}$ easily achievable. Potential applications include operation as a fast, localized helium thermometer and as a transducer in superfluid hydrodynamic experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا