Do you want to publish a course? Click here

Using an improved estimator in the loop-cluster algorithm, we investigate the constraint effective potential of the magnetization in the spin $tfrac{1}{2}$ quantum XY model. The numerical results are in excellent agreement with the predictions of the corresponding low-energy effective field theory. After its low-energy parameters have been determined with better than permille precision, the effective theory makes accurate predictions for the constraint effective potential which are in excellent agreement with the Monte Carlo data. This shows that the effective theory indeed describes the physics in the low-energy regime quantitatively correctly.
204 - F.-J. Jiang , U. Gerber 2011
We study the quantum phase transition from a super solid phase to a solid phase of rho = 1/2 for the extended Bose-Hubbard model on the honeycomb lattice using first principles Monte Carlo calculations. The motivation of our study is to quantitatively understand the impact of theoretical input, in particular the dynamical critical exponent z, in calculating the critical exponent nu. Hence we have carried out four sets of simulations with beta = 2N^{1/2}, beta = 8N^{1/2}, beta = N/2, and beta = N/4, respectively. Here beta is the inverse temperature and N is the numbers of lattice sites used in the simulations. By applying data collapse to the observable superfluid density rho_{s2} in the second spatial direction, we confirm that the transition is indeed governed by the superfluid-insulator universality class. However we find it is subtle to determine the precise location of the critical point. For example, while the critical chemical potential (mu/V)_c occurs at (mu/V)_c = 2.3239(3) for the data obtained using beta = 2N^{1/2}, the (mu/V)_c determined from the data simulated with beta = N/2 is found to be (mu/V)_c = 2.3186(2). Further, while a good data collapse for rho_{s2}N can be obtained with the data determined using beta = N/4 in the simulations, a reasonable quality of data collapse for the same observable calculated from another set of simulations with beta = 8N^{1/2} can hardly be reached. Surprisingly, assuming z for this phase transition is determined to be 2 first in a Monte Carlo calculation, then a high quality data collapse for rho_{s2}N can be achieved for (mu/V)_c ~ 2.3184 and nu ~ 0.7 using the data obtained with beta = 8N^{1/2}. Our results imply that one might need to reconsider the established phase diagrams of some models if the accurate location of the critical point is crucial in obtaining a conclusion.
184 - F.-J. Jiang , U. Gerber 2009
Puzzled by the indication of a new critical theory for the spin-1/2 Heisenberg model with a spatially staggered anisotropy on the square lattice as suggested in cite{Wenzel08}, we study a similar anisotropic spin-1/2 Heisenberg model on the honeycomb lattice. The critical point where the phase transition occurs due to the dimerization as well as the critical exponent $ u$ are analyzed in great detail. Remarkly, using most of the available data points in conjunction with the expected finite-size scaling ansatz with a sub-leading correction indeed leads to a consistent $ u = 0.691(2)$ with that calculated in cite{Wenzel08}. However by using the data with large number of spins $N$, we obtain $ u = 0.707(6)$ which agrees with the most accurate Monte Carlo O(3) value $ u = 0.7112(5)$ as well.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا