Do you want to publish a course? Click here

We study the dynamics of a spin-flip model with a mean field interaction. The system is non reversible, spacially inhomogeneous, and it is designed to model social interactions. We obtain the limiting behavior of the empirical averages in the limit of infinitely many interacting individuals, and show that phase transition occurs. Then, after having obtained the dynamics of normal fluctuations around this limit, we analize long time fluctuations for critical values of the parameters. We show that random inhomogeneities produce critical fluctuations at a shorter time scale compared to the homogeneous system.
Using particle system methodologies we study the propagation of financial distress in a network of firms facing credit risk. We investigate the phenomenon of a credit crisis and quantify the losses that a bank may suffer in a large credit portfolio. Applying a large deviation principle we compute the limiting distributions of the system and determine the time evolution of the credit quality indicators of the firms, deriving moreover the dynamics of a global financial health indicator. We finally describe a suitable version of the Central Limit Theorem useful to study large portfolio losses. Simulation results are provided as well as applications to portfolio loss distribution analysis.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا