Do you want to publish a course? Click here

Diffusion of atoms can be important during quiescent phases of stellar evolution. Particularly in the very thin inert envelopes of subdwarf B stars, diffusive movements will considerably change the envelope structure and the surface abundances on a short timescale. Also, the subdwarfs will inherit the effects of diffusion in their direct progenitors, namely giants near the tip of the red giant branch. This will influence the global evolution and the pulsational properties of subdwarf B stars. We investigate the impact of gravitational settling, thermal diffusion and concentration diffusion on the evolution and pulsations of subdwarf B stars. Our diffusive stellar models are compared with models evolved without diffusion. We constructed subdwarf B models with a mass of 0.465 Msun from a 1 and 3 Msun ZAMS progenitor. The low mass star ignited helium in an energetic flash, while the intermediate mass star started helium fusion gently. For each progenitor type we computed series with and without atomic diffusion. Atomic diffusion in red giants causes the helium core mass at the onset of helium ignition to be larger. We find an increase of 0.0015 Msun for the 1 Msun model and 0.0036 Msun for the 3 Msun model. The effects on the red giant surface abundances are small after the first dredge up. The evolutionary tracks of the diffusive subdwarf B models are shifted to lower surface gravities and effective temperatures due to outward diffusion of hydrogen. This affects both the frequencies of the excited modes and the overall frequency spectrum. Especially the structure and pulsations of the post-non-degenerate sdB star are drastically altered, proving that atomic diffusion cannot be ignored in these stars.
We present the results of binary population simulations of carbon- and nitrogen-enhanced metal-poor (CEMP and NEMP) stars. We show that the observed paucity of very nitrogen-rich stars puts strong constraints on possible modifications of the initial mass function at low metallicity.
In the cores of young dense star clusters repeated stellar collisions involving the same object can occur, which has been suggested to lead to the formation of an intermediate-mass black hole. In order to verify this scenario we compute the detailed evolution of the merger remnant of three sequences. We follow the evolution until the onset of carbon burning and estimate the final remnant mass to determine the ultimate fate of a runaway merger sequence. We use a detailed stellar evolution code to follow the evolution of the collision product. At each collision, we mix the two colliding stars, taking account of mass loss during the collision. During the stellar evolution we apply mass loss rates from the literature, as appropriate for the evolutionary stage of the merger remnant. We compute models for high ($Z=0.02$) and low ($Z=0.001$) metallicity to quantify metallicity effects. We find that the merger remnant becomes a Wolf-Rayet star before the end of core hydrogen burning. Mass loss from stellar winds dominates over the mass increase due to repeated mergers for all three merger sequences that we consider. In none of our high metallicity models an intermediate-mass black hole is formed, instead our models have a mass of 10--14 Msun{} at the onset of carbon burning. For low metallicity we expect the final remnant of the merger sequence to explode as a pair creation supernova. We find that our metal-rich models become inflated as a result of developing an extended low-density envelope. This may increase the probability of further collisions, but self-consistent $N$-body calculations with detailed evolution of runaway mergers are required to verify this.
269 - E. Glebbeek , O. R. Pols 2008
In a companion paper we studied the detailed evolution of stellar collision products that occurred in an $N$-body simulation of the old open cluster M67 and compared our detailed models to simple prescriptions. In this paper we extend this work by studying the evolution of the collision products in open clusters as a function of mass and age of the progenitor stars. We calculated a grid of head-on collisions covering the section of parameter space relevant for collisions in open clusters. We create detailed models of the merger remnants using an entropy-sorting algorithm and follow their subsequent evolution during the initial contraction phase, through the main sequence and up to the giant branch with our detailed stellar evolution code. We compare the location of our models in a colour-magnitude diagram to the observed blue straggler population of the old open clusters M67 and NGC 188 and find that they cover the observed blue straggler region of both clusters. For M67, collisions need to have taken place recently. Differences between the evolution tracks of the collision products and normal main sequence stars can be understood quantitatively using a simple analytic model. We present an analytic recipe that can be used in an $N$-body code to transform a precomputed evolution track for a normal star into an evolution track for a collision product.
Stellar collisions are an important formation channel for blue straggler stars in globular and old open clusters. Hydrodynamical simulations have shown that the remnants of such collisions are out of thermal equilibrium, are not strongly mixed and can rotate very rapidly. Detailed evolution models of collision products are needed to interpret observed blue straggler populations and to use them to probe the dynamical history of a star cluster. We expand on previous studies by presenting an efficient procedure to import the results of detailed collision simulations into a fully implicit stellar evolution code. Our code is able to evolve stellar collision products in a fairly robust manner and allows for a systematic study of their evolution. Using our code we have constructed detailed models of the collisional blue stragglers produced in the $N$-body simulation of M67 performed by Hurley emph{et al.} in 2005. We assume the collisions are head-on and thus ignore the effects of rotation in this paper. Our detailed models are more luminous than normal stars of the same mass and in the same stage of evolution, but cooler than homogeneously mix
Many binary stellar systems in which the primary star is beyond the asymptotic giant branch (AGB) evolutionary phase show significant orbital eccentricities whereas current binary interaction models predict their orbits to be circularised. We analyse how the orbital parameters in a system are modified under mass loss and mass exchange among its binary components and propose a model for enhanced mass-loss from the AGB star due to tidal interaction with its companion, which allows a smooth transition between the wind and Roche-lobe overflow mass-loss regimes. We explicitly follow its effect along the orbit on the change of eccentricity and orbital semi-major axis, as well as the effect of accretion by the companion. We calculate timescales for the variation of these orbital parameters and compare them to the tidal circularisation timescale. We find that in many cases, due to the enhanced mass loss of the AGB component at orbital phases closer to the periastron, the net eccentricity growth rate in one orbit is comparable to the rate of tidal circularisation. We show that with this eccentricity enhancing mechanism it is possible to reproduce the orbital period and eccentricity of the Sirius system, which under the standard assumptions of binary interaction is expected to be circularised. We also show that this mechanism may provide an explanation for the eccentricities of most barium star systems, which are expected to be circularised due to tidal dissipation. By proposing a tidally enhanced model of mass loss from AGB stars we find a mechanism which efficiently works against the tidal circularisation of the orbit, which explains the significant eccentricities observed in binary systems containing a white dwarf and a less evolved companion, such as Sirius and systems with barium stars.
150 - E. Glebbeek , O. R. Pols 2007
When two stars collide and merge they form a new star that can stand out against the background population in a starcluster as a blue straggler. In so called collision runaways many stars can merge and may form a very massive star that eventually forms an intermediate mass blackhole. We have performed detailed evolution calculations of merger remnants from collisions between main sequence stars, both for lower mass stars and higher mass stars. These stars can be significantly brighter than ordinary stars of the same mass due to their increased helium abundance. Simplified treatments ignoring this effect give incorrect predictions for the collision product lifetime and evolution in the Hertzsprung-Russell diagram.
112 - E. Glebbeek , O. R. Pols 2007
The evolution of stellar collision products in cluster simulations has usually been modelled using simplified prescriptions. Such prescriptions either replace the collision product with an (evolved) main sequence star, or assume that the collision product was completely mixed during the collision. It is known from hydrodynamical simulations of stellar collisions that collision products are not completely mixed, however. We have calculated the evolution of stellar collision products and find that they are brighter than normal main sequence stars of the same mass, but not as blue as models that assume that the collision product was fully mixed during the collision.
In close binaries mass and angular momentum can be transferred from one star to the other during Roche-lobe overflow. The efficiency of this process is not well understood and constitutes one of the largest uncertainties in binary evolution. One of the problems lies in the transfer of angular momentum, which will spin up the accreting star. In very tight systems tidal friction can prevent reaching critical rotation, by locking the spin period to the orbital period. Accreting stars in systems with orbital periods larger than a few days reach critical rotation after accreting only a fraction of their mass, unless there is an effective mechanism to get rid of angular momentum. In low mass stars magnetic field might help. In more massive stars angular momentum loss will be accompanied by strong mass loss. This would imply that most interacting binaries with initial orbital periods larger than a few days evolve very non-conservatively. In this contribution we wish to draw attention to the unsolved problems related to mass and angular momentum transfer in binary systems. We do this by presenting the first results of an implementation of spin up by accretion into the TWIN version of the Eggleton stellar evolution code.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا