Do you want to publish a course? Click here

A set of localized, non-Abelian anyons - such as vortices in a p_x + i p_y superconductor or quasiholes in certain quantum Hall states - gives rise to a macroscopic degeneracy. Such a degeneracy is split in the presence of interactions between the anyons. Here we show that in two spatial dimensions this splitting selects a unique collective state as ground state of the interacting many-body system. This collective state can be a novel gapped quantum liquid nucleated inside the original parent liquid (of which the anyons are excitations). This physics is of relevance for any quantum Hall plateau realizing a non-Abelian quantum Hall state when moving off the center of the plateau.
Motivated by the recently observed pattern of unidirectional domains in high-T_c superconductors [Y. Kohsaka et al., Science 315, 1380 (2007)], we investigate the emergence of spontaneous modulations in the d-wave superconducting resonating valence bond phase using the t-J model at x=1/8 doping. Half-filled charge domains separated by four lattice spacings are found to form along one of the crystal axis leading to modulated superconductivity with out-of-phase d-wave order parameters in neighboring domains. Both renormalized mean-field theory and variational Monte Carlo calculations yield that the energies of modulated and uniform phases are very close to each other.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا