Do you want to publish a course? Click here

Nuclear binding energies are investigated in two variants of the Skyrme model: the first replaces the usual Skyrme term with a term that is sixth order in derivatives, and the second includes a potential that is quartic in the pion fields. Solitons in the first model are shown to deviate significantly from ansatze previously assumed in the literature. The binding energies obtained in both models are lower than those obtained from the standard Skyrme model, and those obtained in the second model are close to the experimental values.
138 - Derek Harland 2013
A topological lower bound on the Skyrme energy which depends explicity on the pion mass is derived. This bound coincides with the previously best known bound when the pion mass vanishes, and improves on it whenever the pion mass is non-zero. The new bound can in particular circumstances be saturated. New energy bounds are also derived for the Skyrme model on a compact manifold, for the Faddeev-Skyrme model with a potential term, and for the Aratyn-Ferreira-Zimerman and Nicole models.
The problem of constructing internally rotating solitons of fixed angular frequency $omega$ in the Faddeev-Skyrme model is reformulated as a variational problem for an energy-like functional, called pseudoenergy, which depends parametrically on $omega$. This problem is solved numerically using a gradient descent method, without imposing any spatial symmetries on the solitons, and the dependence of the solitons energy on $omega$, and on their conserved total isospin $J$, studied. It is found that, generically, the shape of a soliton is independent of $omega$, and that its size grows monotonically with $omega$. A simple elastic rod model of time-dependent hopfions is developed which, despite having only one free parameter, accounts well for most of the numerical results.
We present a new quasi-probability distribution function for ensembles of spin-half particles or qubits that has many properties in common with Wigners original function for systems of continuous variables. We show that this function provides clear and intuitive graphical representation of a wide variety of states, including Fock states, spin-coherent states, squeezed states, superpositions and statistical mixtures. Unlike previous attempts to represent ensembles of spins/qubits, this distribution is capable of simultaneously representing several angular momentum shells.
Solitons in the Skyrme-Faddeev model on R^2xS^1 are shown to undergo buckling transitions as the circumference of the S^1 is varied. These results support a recent conjecture that solitons in this field theory are well-described by a much simpler model of elastic rods.
We investigate instantons on manifolds with Killing spinors and their cones. Examples of manifolds with Killing spinors include nearly Kaehler 6-manifolds, nearly parallel G_2-manifolds in dimension 7, Sasaki-Einstein manifolds, and 3-Sasakian manifolds. We construct a connection on the tangent bundle over these manifolds which solves the instanton equation, and also show that the instanton equation implies the Yang-Mills equation, despite the presence of torsion. We then construct instantons on the cones over these manifolds, and lift them to solutions of heterotic supergravity. Amongst our solutions are new instantons on even-dimensional Euclidean spaces, as well as the well-known BPST, quaternionic and octonionic instantons.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا