Do you want to publish a course? Click here

The ill-posedness of the inverse problem of recovering a regression function in a nonparametric instrumental variable model leads to estimators that may suffer from a very slow, logarithmic rate of convergence. In this paper, we show that restricting the problem to models with monotone regression functions and monotone instruments significantly weakens the ill-posedness of the problem. In stark contrast to the existing literature, the presence of a monotone instrument implies boundedness of our measure of ill-posedness when restricted to the space of monotone functions. Based on this result we derive a novel non-asymptotic error bound for the constrained estimator that imposes monotonicity of the regression function. For a given sample size, the bound is independent of the degree of ill-posedness as long as the regression function is not too steep. As an implication, the bound allows us to show that the constrained estimator converges at a fast, polynomial rate, independently of the degree of ill-posedness, in a large, but slowly shrinking neighborhood of constant functions. Our simulation study demonstrates significant finite-sample performance gains from imposing monotonicity even when the regression function is rather far from being a constant. We apply the constrained estimator to the problem of estimating gasoline demand functions from U.S. data.
We derive strong approximations to the supremum of the non-centered empirical process indexed by a possibly unbounded VC-type class of functions by the suprema of the Gaussian and bootstrap processes. The bounds of these approximations are non-asymptotic, which allows us to work with classes of functions whose complexity increases with the sample size. The construction of couplings is not of the Hungarian type and is instead based on the Slepian-Stein methods and Gaussian comparison inequalities. The increasing complexity of classes of functions and non-centrality of the processes make the results useful for applications in modern nonparametric statistics (Gin{e} and Nickl, 2015), in particular allowing us to study the power properties of nonparametric tests using Gaussian and bootstrap approximations.
This paper derives central limit and bootstrap theorems for probabilities that sums of centered high-dimensional random vectors hit hyperrectangles and sparsely convex sets. Specifically, we derive Gaussian and bootstrap approximations for probabilities $Pr(n^{-1/2}sum_{i=1}^n X_iin A)$ where $X_1,dots,X_n$ are independent random vectors in $mathbb{R}^p$ and $A$ is a hyperrectangle, or, more generally, a sparsely convex set, and show that the approximation error converges to zero even if $p=p_nto infty$ as $n to infty$ and $p gg n$; in particular, $p$ can be as large as $O(e^{Cn^c})$ for some constants $c,C>0$. The result holds uniformly over all hyperrectangles, or more generally, sparsely convex sets, and does not require any restriction on the correlation structure among coordinates of $X_i$. Sparsely convex sets are sets that can be represented as intersections of many convex sets whose indicator functions depend only on a small subset of their arguments, with hyperrectangles being a special case.
This paper considers the problem of testing many moment inequalities where the number of moment inequalities, denoted by $p$, is possibly much larger than the sample size $n$. There is a variety of economic applications where solving this problem allows to carry out inference on causal and structural parameters, a notable example is the market structure model of Ciliberto and Tamer (2009) where $p=2^{m+1}$ with $m$ being the number of firms that could possibly enter the market. We consider the test statistic given by the maximum of $p$ Studentized (or $t$-type) inequality-specific statistics, and analyze various ways to compute critical values for the test statistic. Specifically, we consider critical values based upon (i) the union bound combined with a moderate deviation inequality for self-normalized sums, (ii) the multiplier and empirical bootstraps, and (iii) two-step and three-step variants of (i) and (ii) by incorporating the selection of uninformative inequalities that are far from being binding and a novel selection of weakly informative inequalities that are potentially binding but do not provide first order information. We prove validity of these methods, showing that under mild conditions, they lead to tests with the error in size decreasing polynomially in $n$ while allowing for $p$ being much larger than $n$, indeed $p$ can be of order $exp (n^{c})$ for some $c > 0$. Importantly, all these results hold without any restriction on the correlation structure between $p$ Studentized statistics, and also hold uniformly with respect to suitably large classes of underlying distributions. Moreover, in the online supplement, we show validity of a test based on the block multiplier bootstrap in the case of dependent data under some general mixing conditions.
113 - Denis Chetverikov 2012
Monotonicity is a key qualitative prediction of a wide array of economic models derived via robust comparative statics. It is therefore important to design effective and practical econometric methods for testing this prediction in empirical analysis. This paper develops a general nonparametric framework for testing monotonicity of a regression function. Using this framework, a broad class of new tests is introduced, which gives an empirical researcher a lot of flexibility to incorporate ex ante information she might have. The paper also develops new methods for simulating critical values, which are based on the combination of a bootstrap procedure and new selection algorithms. These methods yield tests that have correct asymptotic size and are asymptotically nonconservative. It is also shown how to obtain an adaptive rate optimal test that has the best attainable rate of uniform consistency against models whose regression function has Lipschitz-continuous first-order derivatives and that automatically adapts to the unknown smoothness of the regression function. Simulations show that the power of the new tests in many cases significantly exceeds that of some prior tests, e.g. that of Ghosal, Sen, and Van der Vaart (2000). An application of the developed procedures to the dataset of Ellison and Ellison (2011) shows that there is some evidence of strategic entry deterrence in pharmaceutical industry where incumbents may use strategic investment to prevent generic entries when their patents expire.
114 - Denis Chetverikov 2011
In this paper, I construct a new test of conditional moment inequalities, which is based on studentized kernel estimates of moment functions with many different values of the bandwidth parameter. The test automatically adapts to the unknown smoothness of moment functions and has uniformly correct asymptotic size. The test has high power in a large class of models with conditional moment inequalities. Some existing tests have nontrivial power against n^{-1/2}-local alternatives in a certain class of these models whereas my method only allows for nontrivial testing against (n/log n)^{-1/2}-local alternatives in this class. There exist, however, other classes of models with conditional moment inequalities where the mentioned tests have much lower power in comparison with the test developed in this paper.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا