Do you want to publish a course? Click here

350 - Daniel Reem 2019
This note tries to show that a re-examination of a first course in analysis, using the more sophisticated tools and approaches obtained in later stages, can be a real fun for experts, advanced students, etc. We start by going to the extreme, namely we present two proofs of the Extreme Value Theorem: the programmer proof that suggests a method (which is practical in down-to-earth settings) to approximate, to any required precision, the extreme values of the given function in a metric space setting, and an abstract space proof (the level-set proof) for semicontinuous functions defined on compact topological spaces. Next, in the intermediate part, we consider the Intermediate Value Theorem, generalize it to a wide class of discontinuous functions, and re-examine the meaning of the intermediate value property. The trek reaches the final frontier when we discuss the Uniform Continuity Theorem, generalize it, re-examine the meaning of uniform continuity, and find the optimal delta of the given epsilon. Have fun!
183 - Yair Censor , Daniel Reem 2014
The convex feasibility problem (CFP) is at the core of the modeling of many problems in various areas of science. Subgradient projection methods are important tools for solving the CFP because they enable the use of subgradient calculations instead of orthogonal projections onto the individual sets of the problem. Working in a real Hilbert space, we show that the sequential subgradient projection method is perturbation resilient. By this we mean that under appropriate conditions the sequence generated by the method converges weakly, and sometimes also strongly, to a point in the intersection of the given subsets of the feasibility problem, despite certain perturbations which are allowed in each iterative step. Unlike previous works on solving the convex feasibility problem, the involved functions, which induce the feasibility problems subsets, need not be convex. Instead, we allow them to belong to a wider and richer class of functions satisfying a weaker condition, that we call zero-convexity. This class, which is introduced and discussed here, holds a promise to solve optimization problems in various areas, especially in non-smooth and non-convex optimization. The relevance of this study to approximate minimization and to the recent superiorization methodology for constrained optimization is explained.
227 - Daniel Reem 2013
Consider a set represented by an inequality. An interesting phenomenon which occurs in various settings in mathematics is that the interior of this set is the subset where strict inequality holds, the boundary is the subset where equality holds, and the closure of the set is the closure of its interior. This paper discusses this phenomenon assuming the set is a Voronoi cell induced by given sites (subsets), a geometric object which appears in many fields of science and technology and has diverse applications. Simple counterexamples show that the discussed phenomenon does not hold in general, but it is established in a wide class of cases. More precisely, the setting is a (possibly infinite dimensional) uniformly convex normed space with arbitrary positively separated sites. An important ingredient in the proof is a strong version of the triangle inequality due to Clarkson (1936), an interesting inequality which has been almost totally forgotten.
260 - Daniel Reem , Simeon Reich 2011
A zone diagram is a relatively new concept which was first defined and studied by T. Asano, J. Matousek and T. Tokuyama. It can be interpreted as a state of equilibrium between several mutually hostile kingdoms. Formally, it is a fixed point of a certain mapping. These authors considered the Euclidean plane and proved the existence and uniqueness of zone diagrams there. In the present paper we generalize this concept in various ways. We consider general sites in m-spaces (a simple generalization of metric spaces) and prove several existence and (non)uniqueness results in this setting. In contrast to previous works, our (rather simple) proofs are based on purely order theoretic arguments. Many explicit examples are given, and some of them illustrate new phenomena which occur in the general case. We also re-interpret zone diagrams as a stable configuration in a certain combinatorial game, and provide an algorithm for finding this configuration in a particular case.
102 - Daniel Reem 2011
This note is devoted to two classical theorems: the open mapping theorem for analytic functions (OMT) and the fundamental theorem of algebra (FTA). We present a new proof of the first theorem, and then derive the second one by a simple topological argument. The proof is elementary in nature and does not use any kind of integration (neither complex nor real). In addition, it is also independent of the fact that the roots of an analytic function are isolated. The proof is based on either the Banach or Brouwer fixed point theorems. In particular, this shows that one can obtain a proof of the FTA (albeit indirect) which is based on the Brouwer fixed point theorem, an aim which was not reached in the past and later the possibility to achieve it was questioned. We close this note with a simple generalization of the FTA. A short review of certain issues related to the OMT and the FTA is also included.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا