Do you want to publish a course? Click here

115 - A. Niyazi , D. Geffroy , 2021
We present a dynamical mean-field study of antiferromagnetic magnons in one-, two- and three-orbital Hubbard model of square and bcc cubic lattice at intermediate coupling strength. Weinvestigate the effect of anisotropy introduced by an external magnetic field or single-ion anisotropy.For the latter we tune continuously between the easy-axis and easy-plane models. We also analyzea model with spin-orbit coupling in cubic site-symmetry setting. The ordered states as well as themagnetic excitations are sensitive to even a small breaking ofSU(2)symmetry of the model andfollow the expectations of spin-wave theory as well as general symmetry considerations.
We present a dynamical mean-field study of two-particle dynamical response functions in two-band Hubbard model across several phase transitions. We observe that the transition between theexcitonic condensate and spin-state ordered state is continuous with a narrow strip of supersolidphase separating the two. Approaching transition from the excitonic condensate is announced bysoftening of the excitonic mode at theMpoint of the Brillouin zone. Inside the spin-state orderedphase there is a magnetically ordered state with 2x2 periodicity, which has no precursor in thenormal phase.
265 - D. Geffroy , A. Hariki , J. Kunes 2018
We investigate spin-triplet exciton condensation in the two-orbital Hubbard model close to half filling by means of dynamical mean-field theory. Employing an impurity solver that handles complex off-diagonal hybridization functions, we study the behavior of excitonic condensate in stoichiometric and doped systems subject to external magnetic field. We find a general tendency of the triplet order parameter to lay perpendicular with the applied field and identify exceptions from this rule. For solutions exhibiting k-odd spin textures, we discuss the Bloch theorem which, in the absence of spin-orbit coupling, forbids the appearance of spontaneous net spin current. We demonstrate that the Bloch theorem is not obeyed by the dynamical mean-field theory.
86 - J. Kunes , D. Geffroy 2016
Spin textures in k-space arising from spin-orbit coupling in non-centrosymmetric crystals find numerous applications in spintronics. We present a mechanism that leads to appearance of k-space spin texture due to spontaneous symmetry breaking driven by electronic correlations. Using dynamical mean-field theory we show that doping a spin-triplet excitonic insulator provides a means of creating new thermodynamic phases with unique properties. The numerical results are interpreted using analytic calculations within a generalized double-exchange framework.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا