Do you want to publish a course? Click here

We use a tensor C*-category with conjugates and two quasitensor functors into the category of Hilbert spaces to define a *-algebra depending functorially on this data. If one of them is tensorial, we can complete in the maximal C*-norm. A particular case of this construction allows us to begin with solutions of the conjugate equations and associate ergodic actions of quantum groups on the C*-algebra in question. The quantum groups involved are A_u(Q) and B_u(Q).
We construct a new class of finite-dimensional C^*-quantum groupoids at roots of unity q=e^{ipi/ell}, with limit the discrete dual of the classical SU(N) for large orders. The representation category of our groupoid turns out to be tensor equivalent to the well known quotient C^*-category of the category of tilting modules of the non-semisimple quantum group U_q({mathfrak sl}_N) of Drinfeld, Jimbo and Lusztig. As an algebra, the C^*-groupoid is a quotient of U_q({mathfrak sl}_N). As a coalgebra, it naturally reflects the categorical quotient construction. In particular, it is not coassociative, but satisfies axioms of the weak quasi-Hopf C^*-algebras: quasi-coassociativity and non-unitality of the coproduct. There are also a multiplicative counit, an antipode, and an R-matrix. For this, we give a general construction of quantum groupoids for complex simple Lie algebras {mathfrak g} eq E_8 and certain roots of unity. Our main tools here are Drinfelds coboundary associated to the R-matrix, related to the algebra involution, and certain canonical projections introduced by Wenzl, which yield the coproduct and Drinfelds associator in an explicit way. Tensorial properties of the negligible modules reflect in a rather special nature of the associator. We next reduce the proof of the categorical equivalence to the problems of establishing semisimplicity and computing dimension of the groupoid. In the case {mathfrak g}={mathfrak sl}_N we construct a (non-positive) Haar-type functional on an associative version of the dual groupoid satisfying key non-degeneracy properties. This enables us to complete the proof.
We introduce the notion of identity component of a compact quantum group and that of total disconnectedness. As a drawback of the generalized Burnside problem, we note that totally disconnected compact matrix quantum groups may fail to be profinite. We consider the problem of approximating the identity component as well as the maximal normal (in the sense of Wang) connected subgroup by introducing canonical, but possibly transfinite, sequences of subgroups. These sequences have a trivial behaviour in the classical case. We give examples, arising as free products, where the identity component is not normal and the associated sequence has length 1. We give necessary and sufficient conditions for normality of the identity component and finiteness or profiniteness of the quantum component group. Among them, we introduce an ascending chain condition on the representation ring, called Lie property, which characterizes Lie groups in the commutative case and reduces to group Noetherianity of the dual in the cocommutative case. It is weaker than ring Noetherianity but ensures existence of a generating representation. The Lie property and ring Noetherianity are inherited by quotient quantum groups. We show that A_u(F) is not of Lie type. We discuss an example arising from the compact real form of U_q(sl_2) for q<0.
257 - Claudia Pinzari 2011
We give local upper and lower bounds for the eigenvalues of the modular operator associated to an ergodic action of a compact quantum group on a unital C*-algebra. They involve the modular theory of the quantum group and the growth rate of quantum dimensions of its representations and they become sharp if other integral invariants grow subexponentially. For compact groups, this reduces to the finiteness theorem of Hoegh-Krohn, Landstad and Stormer. Consequently, compact quantum groups of Kac type admitting an ergodic action with a non-tracial invariant state must have representations whose dimensions grow exponentially. In particular, S_{-1}U(d) acts ergodically only on tracial C*-algebras. For quantum groups with non-involutive coinverse, we derive a lower bound for the parameters 0<lambda<1 of factors of type III_lambda that can possibly arise from the GNS representation of the invariant state of an ergodic action with a factorial centralizer.
Let G be a classical compact Lie group and G_mu the associated compact matrix quantum group deformed by a positive parameter mu (or a nonzero and real mu in the type A case). It is well known that the category Rep(G_mu) of unitary f.d. representations of G_mu is a braided tensor C*-category. We show that any braided tensor *-functor from Rep(G_mu) to another braided tensor C*-category with irreducible tensor unit is full if |mu| eq 1. In particular, the functor of restriction to the representation category of a proper compact quantum subgroup, cannot be made into a braided functor. Our result also shows that the Temperley--Lieb category generated by an object of dimension >2 can not be embedded properly into a larger category with the same objects as a braided tensor C*-subcategory.
To a proper inclusion Nsubset M of II_1 factors of finite Jones index [M:N], we associate an ergodic C*-action of the quantum group S_mu U(2). The deformation parameter is determined by -1<mu<0 and [M:N]=|mu+mu^{-1}|. The higher relative commutants can be identified with the spectral spaces of the tensor powers of the defining representation of the quantum group. This ergodic action may be thought of as a virtual subgroup of S_mu U(2) in the sense of Mackey arising from the tensor category generated by M regarded as a bimodule over N. mu is negative as M is a real bimodule.
This paper addresses the problem of describing the structure of tensor C*-categories M with conjugates and irreducible tensor unit. No assumption on the existence of a braided symmetry or on amenability is made. Our assumptions are motivated by the remark that these categories often contain non-full tensor C*-subcategories with conjugates and the same objects admitting an embedding into the Hilbert spaces. Such an embedding defines a compact quantum group by Woronowicz duality. An important example is the Temperley--Lieb category canonically contained in a tensor C*-category generated by a single real or pseudoreal object of dimension bigger than 2. The associated quantum groups are the universal orthogonal quantum groups of Wang and Van Daele. Our main result asserts that there is a full and faithful tensor functor from M to a category of Hilbert bimodule representations of the compact quantum group. In the classical case, these bimodule representations reduce to the G-equivariant Hermitian bundles over compact homogeneous G-spaces, with G a compact group. Our structural results shed light on the problem of whether there is an embedding functor of M into the Hilbert spaces. We show that this is related to the problem of whether a classical compact Lie group can act ergodically on a non-type I von Neumann algebra. In particular, combining this with a result of Wassermann shows that an embedding exists if M is generated by a pseudoreal object of dimension 2.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا