Do you want to publish a course? Click here

Future dark energy experiments will require better and more accurate theoretical predictions for the baryonic acoustic oscillations (BAO) signature in the spectrum of cosmological perturbations. Here, we use large N-body simulations of the LambdaCDM Planck cosmology to study any possible systematic shifts and damping in BAO due to the impact of nonlinear gravitational growth of structure, scale dependent and non-local bias, and redshift-space distortions. The effect of cosmic variance is largely reduced by dividing the tracer power spectrum by that from a BAO-free simulation starting with the same phases. This permits us to study with unprecedented accuracy (better than 0.02% for dark matter and 0.07% for low-bias halos) small shifts of the pristine BAO wavenumbers towards larger k, and non-linear damping of BAO wiggles in the power spectrum of dark matter and halo populations in the redshift range z=0-1. For dark matter, we provide an accurate parametrization of the evolution of alpha as a function of the linear growth factor D(z). For halo samples, with bias ranging from 1.2 to 2.8, we measure a typical BAO shift of ~0.25%, observed in real-space, which does not show an appreciable evolution with redshift within the uncertainties. Moreover, we report a constant shift as a function of halo bias. We find a different evolution of the damping of the acoustic feature in all halo samples as compared to dark matter with haloes suffering less damping, and also find some weak dependence on bias. A larger BAO shift and damping is measured in redshift-space which can be well explained by linear theory due to redshift-space distortions. A clear modulation in phase with the acoustic scale is observed in the scale-dependent halo bias due to the presence of the baryonic acoustic oscillations.
We obtain constraints on the variation of the fundamental constants from the full shape of the redshift-space correlation function of a sample of luminous galaxies drawn from the Data Release 9 of the Baryonic Oscillations Spectroscopic Survey. We combine this information with data from recent CMB, BAO and H_0 measurements. We focus on possible variations of the fine structure constant alpha and the electron mass m_e in the early universe, and study the degeneracies between these constants and other cosmological parameters, such as the dark energy equation of state parameter w_DE, the massive neutrinos fraction f_ u, the effective number of relativistic species N_eff, and the primordial helium abundance Y_He. When only one of the fundamental constants is varied, our final bounds are alpha / alpha_0 = 0.9957_{-0.0042}^{+0.0041} and m_e /(m_e)_0 = 1.006_{-0.013}^{+0.014}. For their joint variation, our results are alpha / alpha_0 = 0.9901_{-0.0054}^{+0.0055} and m_e /(m_e)_0 = 1.028 +/- 0.019. Although when m_e is allowed to vary our constraints on w_DE are consistent with a cosmological constant, when alpha is treated as a free parameter we find w_DE = -1.20 +/- 0.13; more than 1 sigma away from its standard value. When f_ u and alpha are allowed to vary simultaneously, we find f_ u < 0.043 (95% CL), implying a limit of sum m_ u < 0.46 eV (95% CL), while for m_e variation, we obtain f_nu < 0.086 (95% CL), which implies sum m_ u < 1.1 eV (95% CL). When N_eff or Y_He are considered as free parameters, their simultaneous variation with alpha provides constraints close to their standard values (when the H_0 prior is not included in the analysis), while when m_e is allowed to vary, their preferred values are significantly higher. In all cases, our results are consistent with no variations of alpha or m_e at the 1 or 2 sigma level.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا