Do you want to publish a course? Click here

We present Karl G. Jansky Very Large Array (VLA) observations of the CO ($J = 2 rightarrow 1$) line emission towards the $z = 6.419$ quasar SDSS J$114816.64+525150.3$ (J$1148+5251$). The molecular gas is found to be marginally resolved with a major axis of $0.9$ (consistent with previous size measurements of the CO ($J = 7 rightarrow 6$) emission). We observe tentative evidence for extended line emission towards the south west on a scale of ~$1.4$, but this is only detected at $3.3sigma$ significance and should be confirmed. The position of the molecular emission region is in excellent agreement with previous detections of low frequency radio continuum emission as well as [C ii] line and thermal dust continuum emission. These CO ($J = 2 rightarrow 1$) observations provide an anchor for the low excitation part of the molecular line SED. We find no evidence for extended low excitation component, neither in the spectral line energy distribution nor the image. We fit a single kinetic gas temperature model of 50 K. We revisit the gas and dynamical masses in light of this new detection of a low order transition of CO, and confirm previous findings that there is no extended reservoir of cold molecular gas in J$1148+5251$, and that the source departs substantially from the low $z$ relationship between black hole mass and bulge mass. Hence, the characteristics of J$1148+5251$ at $z = 6.419$ are very similar to $z$~$2$ quasars, in the lack of a diffuse cold gas reservoir and kpc-size compactness of the star forming region.
We present ALMA observations of the [C II] 158 micron fine structure line and dust continuum emission from the host galaxies of five redshift 6 quasars. We also report complementary observations of 250 GHz dust continuum and CO (6-5) line emission from the z=6.00 quasar SDSS J231038.88+185519.7. The ALMA observations were carried out in the extended array at 0.7 resolution. We have detected the line and dust continuum in all five objects. The derived [C II] line luminosities are 1.6x10^{9} to 8.8x10^{9} Lsun and the [C II]-to-FIR luminosity ratios are 3.0-5.6x10^{-4}, which is comparable to the values found in other high-redshift quasar-starburst systems and local ultra-luminous infrared galaxies. The sources are marginally resolved and the intrinsic source sizes (major axis FWHM) are constrained to be 0.3 to 0.6 (i.e., 1.7 to 3.5 kpc) for the [C II] line emission and 0.2 to 0.4 (i.e., 1.2 to 2.3 kpc) for the continuum. These measurements indicate that there is vigorous star formation over the central few kpc in the quasar host galaxies. The ALMA observations also constrain the dynamical properties of the atomic gas in the starburst nuclei. The intensity-weighted velocity maps of three sources show clear velocity gradients. Such velocity gradients are consistent with a rotating, gravitationally bound gas component, although they are not uniquely interpreted as such. Under the simplifying assumption of rotation, the implied dynamical masses within the [C II]-emitting regions are of order 10^{10} to 10^{11} Msun. Given these estimates, the mass ratios between the SMBHs and the spheroidal bulge are an order of magnitude higher than the mean value found in local spheroidal galaxies, which is in agreement with results from previous CO observations of high redshift quasars.
We present observations taken with the Precision Array for Probing the Epoch of Reionization (PAPER) of the Centaurus A field in the frequency range 114 to 188 MHz. The resulting image has a 25 resolution, a dynamic range of 3500 and an r.m.s. of 0.5 Jybeam (for a beam size of 25 x 23). A spectral index map of Cen A is produced across the full band. The spectral index distribution is qualitatively consistent with electron reacceleration in regions of excess turbulence in the radio lobes, as previously identified morphologically. Hence, there appears to be an association of severe weather in radio lobes with energy input into the relativistic electron population. We compare the PAPER large scale radio image with the X-ray image from the ROSAT All Sky Survey. There is a tentative correlation between radio and X-ray features at the end of the southern lobe, some 200 kpc from the nucleus, as might be expected from inverse Compton scattering of the CMB by the relativistic electrons also responsible for the radio synchrotron emission. The magnetic fields derived from the (possible) IC and radio emission are of similar magnitude to fields derived under the minimum pressure assumptions, ~ 1 {mu}G. However, the X-ray field is complex, with large scale gradients and features possibly unrelated to Cen A. If these X-ray features are unrelated to Cen A, then these fields are lower limits.
We present observations of four z>= SDSS quasars at 350 micron with the SHARC-II bolometer camera on the Caltech Submillimeter Observatory. These are among the deepest observations that have been made by SHARC-II at 350 micron, and three quasars are detected at >=3 sigma significance, greatly increasing the sample of 350 micron (corresponds to rest frame wavelengths of <60 micron at z>=5), detected high-redshift quasars. The derived rest frame far-infrared (FIR) emission in the three detected sources is about five to ten times stronger than that expected from the average SED of the local quasars given the same 1450A luminosity. Combining the previous submillimeter and millimeter observations at longer wavelengths, the temperatures of the FIR-emitting warm dust from the three quasar detections are estimated to be in the range of 39 to 52 K. Additionally, the FIR-to-radio SEDs of the three 350 micron detections are consistent with the emission from typical star forming galaxies. The FIR luminosities are ~10^{13} L_solar and the dust masses are >= 10^{8}M_solar. These results confirm that huge amounts of warm dust can exist in the host galaxies of optically bright quasars as early as z~6. The universe is so young at these epochs (~1 Gyr) that a rapid dust formation mechanism is required. We estimate the size of the FIR dust emission region to be about a few kpc, and further provide a comparison of the SEDs among different kinds of dust emitting sources to investigate the dominant dust heating mechanism.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا