Do you want to publish a course? Click here

The Laplacian spread of a graph is the difference between the largest eigenvalue and the second-smallest eigenvalue of the Laplacian matrix of the graph. We find that the class of strongly regular graphs attains the maximum of largest eigenvalues, the minimum of second-smallest eigenvalues of Laplacian matrices and hence the maximum of Laplacian spreads among all simple connected graphs of fixed order, minimum degree, maximum degree, minimum size of common neighbors of two adjacent vertices and minimum size of common neighbors of two nonadjacent vertices. Some other extremal graphs are also provided.
141 - Chia-an Liu , Chih-wen Weng 2014
Let k, p, q be positive integers with k < p < q+1. We prove that the maximum spectral radius of a simple bipartite graph obtained from the complete bipartite graph Kp,q of bipartition orders p and q by deleting k edges is attained when the deleting edges are all incident on a common vertex which is located in the partite set of order q. Our method is based on new sharp upper bounds on the spectral radius of bipartite graphs in terms of their degree sequences.
161 - Chia-an Liu , Chih-wen Weng 2012
Let G be a simple connected graph of order n with degree sequence d_1, d_2, ..., d_n in non-increasing order. The spectral radius rho(G) of G is the largest eigenvalue of its adjacency matrix. For each positive integer L at most n, we give a sharp upper bound for rho(G) by a function of d_1, d_2, ..., d_L, which generalizes a series of previous results.
Let $W$ denote a simply-laced Coxeter group with $n$ generators. We construct an $n$-dimensional representation $phi$ of $W$ over the finite field $F_2$ of two elements. The action of $phi(W)$ on $F_2^n$ by left multiplication is corresponding to a combinatorial structure extracted and generalized from Vogan diagrams. In each case W of types A, D and E, we determine the orbits of $F_2^n$ under the action of $phi(W)$, and find that the kernel of $phi$ is the center $Z(W)$ of $W.$
Let $X=(V,E)$ be a finite simple connected graph with $n$ vertices and $m$ edges. A configuration is an assignment of one of two colors, black or white, to each edge of $X.$ A move applied to a configuration is to select a black edge $epsilonin E$ and change the colors of all adjacent edges of $epsilon.$ Given an initial configuration and a final configuration, try to find a sequence of moves that transforms the initial configuration into the final configuration. This is the edge-flipping puzzle on $X,$ and it corresponds to a group action. This group is called the edge-flipping group $mathbf{W}_E(X)$ of $X.$ This paper shows that if $X$ has at least three vertices, $mathbf{W}_E(X)$ is isomorphic to a semidirect product of $(mathbb{Z}/2mathbb{Z})^k$ and the symmetric group $S_n$ of degree $n,$ where $k=(n-1)(m-n+1)$ if $n$ is odd, $k=(n-2)(m-n+1)$ if $n$ is even, and $mathbb{Z}$ is the additive group of integers.
Let $S$ be a connected graph which contains an induced path of $n-1$ vertices, where $n$ is the order of $S.$ We consider a puzzle on $S$. A configuration of the puzzle is simply an $n$-dimensional column vector over ${0, 1}$ with coordinates of the vector indexed by the vertex set $S$. For each configuration $u$ with a coordinate $u_s=1$, there exists a move that sends $u$ to the new configuration which flips the entries of the coordinates adjacent to $s$ in $u.$ We completely determine if one configuration can move to another in a sequence of finite steps.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا