Do you want to publish a course? Click here

Using consistency requirements relating chiral condensates imposed by the so called Generalized Konishi Anomaly, we show that dimensional transmutation via gaugino condensation {emph{in the ultraviolet}} drives gauge symmetry breaking in a large class of {emph{asymptotically strong}} Super Yang Mills Higgs theories. For Adjoint multiplet type chiral superfields $Phi$ (transforming as $r times bar r$ representations of a non Abelian gauge group G), solution of the Generalized Konishi Anomaly(GKA) equations allows calculation of quantum corrected VEVs in terms of the dimensional transmutation scale $Lambda_{UV} simeq M_X , e^{frac{8pi^2}{ g^2(M_X) b_0}} $ which determines the gaugino condensate. Thus the gauge coupling at the perturbative unification scale $M_X$ generates GUT symmetry breaking VEVs by non-perturbative dimensional transmutation. This obviates the need for large(or any) input mass scales in the superpotential. Rank reduction can be achieved by including pairs of chiral superfields transforming as either $({bf Q}(r),{ bfbar Q}(bar r))$ or $ (Sig((rotimes r)_{symm})), Sigb(({bar r otimesbar r})_{symm})$, that form trilinear matrix gauge invariants $bar Qcdot Phicdot Q, Sigb cdot Phicdot Sig $ with $Phi$. Novel, robust and {emph{ultraminimal}} Grand unification algorithms emerge from the analysis. We sketch the structure of a realistic Spin(10) model, with the $16$-plet of Spin(10) as the base representation $r$, which mimics the realistic Minimal Supersymmetric GUT but contains even fewer free parameters. We argue that our results point to a large extension of the dominant and normative paradigms of Asymptotic Freedom$/$IR colour confinement and potential driven spontaneous symmetry breaking that have long ruled gauge theories.
We list operators of the superpotential of the effective MSSM that emerges from the NMSGUT up to sextic degree. We give illustrative expressions for the coefficients in terms of NMSGUT parameters. We also estimate the impact of GUT scale threshold corrections on these effective operators in view of the demonstration that $B$ violation via quartic superpotential terms can be suppressed to acceptable levels after including such corrections in the NMSGUT. We find a novel $B, B-L$ violating quintic operator that leads to the decay mode $nto e^- K^+$. We also remark that the threshold corrections to the Type I seesaw mechanism make the deviation of right handed neutrino masses from the GUT scale more natural while Type II seesaw neutrino masses, which earlier tended to utterly negligible receive threshold enhancement. Our results are of relevance for analyzing $B-L$ violating operator based, sphaleron safe, Baryogenesis.
105 - Charanjit S. Aulakh 2015
The Minimal Supersymmetric SO(10) GUT has developed into a fully realistic theory in which not only are the gauge couplings unified but the known fermion spectrum and mixing matrices could fit accurately using the latitude introduced by inclusion of quantum corrections to the GUT-effective MSSM-SM matching conditions. The fits yield predictions about the nature of the sparticle spectrum on the basis of the required threshold corrections. This indicated a necessarily large value for $A_0$ in 2008 : well before Higgs discovery at 126 GeV made it a commonplace assumption. GUT scale threshold corrections to the normalization of the emergent effective MSSM Higgs ameliorate the long standing Susy GUT puzzle of fast dimension five operator mediated proton decay. Numerical investigation indicates that B-violation rates below or near the current experimental upper limits are feasible in fully realistic models. Our results imply that UV completion models with large numbers of fields, like Kaluza-Klein models or String Theory, must be able to compute threshold corrections to be considered quantitative theories and not just fables. Required improvements in the fitting procedure are discussed. A generalization of the NMSGUT by gauging the flavour symmetry of the kinetic terms,while retaining renormalizability and the successful MSGUT symmetry breaking patterns, may allow dynamical generation of the observed Yukawa structure of the MSSM via the spontaneous breaking of the full gauge symmetry down to the MSSM at the unification scale. Focus on the emergence of the MSSM Higgs from the multiple Higgs doublets in the GUT thus provides a crucial window to view the energetically remote UV dynamics specified in fully calculable and realistic MSGUTs.
Consistency of trans-unification RG evolution is used to discuss the domain of definition of the New Minimal Supersymmetric SO(10) GUT (NMSGUT). We compute the 1-loop RGE $beta$ functions, simplifying generic formulae using constraints of gauge invariance and superpotential structure. We also calculate the 2 loop contributions to the gauge coupling and gaugino mass and indicate how to get full 2 loop results for all couplings. Our method overcomes combinatorial barriers that frustrate computer algebra based attempts to calculate SO(10) $beta$ functions involving large irreps. Use of the RGEs identifies a perturbative domain $Q < M_E$, where $M_E <M_{Planck}$ is the emph{scale of emergence} where the NMSGUT, with GUT compatible soft supersymmetry breaking terms emerges from the strong UV dynamics associated with the Landau poles in gauge and Yukawa couplings. Due to the strength of the RG flows the Landau poles for gauge and Yukawa couplings lie near a cutoff scale $Lambda_E $ for the perturbative dynamics of the NMSGUT which just above $M_E$. SO(10) RG flows into the IR are shown to facilitate small gaugino masses and generation of negative Non Universal Higgs masses squared needed by realistic NMSGUT fits of low energy data. Running the simple canonical theory emergent at $M_E$ through $M_X$ down to the electroweak scale enables tests of candidate scenarios such as supergravity based NMSGUT with canonical kinetic terms and NMSGUT based dynamical Yukawa unification.
The Supersymmetric SO(10) theory (NMSO(10)GUT) based on thehfilbreak ${bf{210+126 +oot}}$ Higgs system proposed in 1982 has evolved into a realistic theory capable of fitting the known low energy Particle Physics data besides providing a Dark matter candidate and embedding Inflationary Cosmology. It dynamically resolves longstanding issues such as fast dimension five operator mediated proton decay in Susy GUTs by allowing explicit and complete calculation of crucial threshold effects at $M_{Susy}$ and $M_{GUT}$ in terms of fundamental parameters. This shows that SO(10) Yukawas responsible for observed fermion masses as well as operator dimension 5 mediated proton decay can be highly suppressed on a Higgs dissolution edge in the parameter space of GUTs with rich superheavy spectra. This novel and generically relevant result highlights the need for every realistic UV completion model with a large/infinite number of heavy fields coupled to the light Higgs doublets to explicitly account for the large wave function renormalization effects on emergent light Higgs fields in order to be considered a quantitatively well defined candidate UV completion. The NMSGUT predicts large soft Susy breaking trilinear couplings and distinctive sparticle spectra. Measurable or near measurable level of tensor perturbations- and thus large Inflaton mass scale- may be accommodated by Supersymetric Seesaw inflation within the NMSGUT based on an LHN flat direction Inflaton if the Higgs component contains contributions from heavy Higgs components. Successful NMSGUT fits suggest a emph{renormalizable} Yukawon Ultra minimal gauged theory of flavor based upon the NMSGUT Higgs structure.
149 - Charanjit S. Aulakh 2014
Bajc-Melfo(textbf{BM}) two field ($S,phi$) superpotentials define metastable F-term supersymmetry breaking vacua suitable as hidden sectors for calculable and realistic family and Grand Unification unification models. The undetermined vev $<S_s>$ of the Polonyi field that breaks Supersymmetry can be fixed either by coupling to N=1 Supergravity or by radiative corrections. textbf{BM} hidden sectors extend to symmetric multiplets $(S,phi)_{ab}$ of a gauged $O(N_g)$ family symmetry, broken at the GUT scale, so that the $O(N_g)$ charged component vevs $<hat S_{ab}>$ are also undetermined before accounting for the $O(N_g)$ D-terms: which fix them by cancellation against D-term contributions from the visible sector. This facilitates Yukawon Ultra Minimal GUTs(YUMGUTs) proposed in [C.S.Aulakh and C.K.Khosa, Phys.Rev.D 90,045008(2014)] by relieving the visible sector from the need to give null D-terms for the family symmetry $ O(N_g)$. We analyze symmetry breaking and and spectra of the hidden sector fields in the Supergravity resolved case when $N_g=1,2,3$. Besides the Polonyi field $S_s$, most of the superfields $hat S_{ab}$ remain light, with fermions getting masses only from loop corrections. Such modes may yield novel dark matter lighter than 100 GeV. Possible Polonyi and moduli problems associated with the the fields $S_{ab}$ call for detailed investigation of loop effects due to the Yukawa and gauge interactions in the hidden sector and of post-inflationary field relaxation dynamics.
Superheavy threshold corrections to the matching condition between matter Yukawa couplings of the effective Minimal Supersymmetric Standard Model (MSSM) and the New Minimal Supersymmetric (SO(10)) GUT(NMSGUT) provide a novel and generic mechanism for reducing the long standing and generically problematic operator dimension 5 Baryon decay rates. In suitable regions of the parameter space strong wave function renormalization of the effective MSSM Higgs doublets due to the large number of heavy fields can take the wave function renormalization of the MSSM Higgs field close to the dissolution value ($Z_{H,overline{H}}=0$). Rescaling to canonical kinetic terms lowers the SO(10) Yukawas required to match the MSSM fermion data. Since the same Yukawas determine the dimension 5 B violation operator coefficients, the associated rates can be suppressed to levels compatible with current limits. Including these threshold effects also relaxes the constraint $ y_b-y_tausimeq y_s-y_mu$ operative between $textbf{10} -textbf{120} $ plet generated tree level MSSM matter fermion Yukawas $y_f$. We exhibit accurate fits of the MSSM fermion mass-mixing data in terms of NMSGUT superpotential couplings and 5 independent soft Susy breaking parameters specified at $10^{16.25},$ GeV with the claimed suppression of Baryon decay rates. As before, our s-spectra are of the mini split supersymmetry type with large $|A_0|,mu,m_{H,overline H} > 100,,$ TeV, light gauginos and normal s-hierarchy. Large $A_0,mu$ and soft masses allow significant deviation from the canonical GUT gaugino mass ratios and ensure vacuum safety. Even without optimization, prominent candidates for BSM discovery such as the muon magnetic anomaly, $brightarrow sgamma$ and Lepto-genesis CP violation emerge in the preferred ball park.
Renormalizable SO(10) grand unified theories (GUTs), extended by $O(N_g)_F$ family gauge symmetry, generate minimal supersymmetric Standard Model flavour structure dynamically via vacuum expectation values of Yukawon Higgs multiplets. For concrete illustration and calculability, we work with the fully realistic minimal supersymmetric GUTs based on the $bf{210 oplus {overline{126}}oplus 126} $ GUT Higgs system - which were already parameter counting minimal relative to other realistic models. $SO(10)$ fermion Higgs channels $bf{{overline{126}},10}$($mathbf{120}$) extend to symmetric(antisymmetric) representations of $O(N_g)_F$, while $mathbf{210,126}$ are symmetric. $N_g=3$ dynamical Yukawa generation reduces the matter fermion Yukawas from 15 to 3 (21 to 5) without (with) the $bf{120}$ Higgs. Yukawon GUTs are thus ultraminimal in parameter counting terms. Consistent symmetry breaking is ensured by a hidden sector Bajc-Melfo(BM) superpotential with a pair of symmetric $O(N_g)$ multiplets $phi,S $, of which the latters singlet part $S_s$ breaks supersymmetry and the traceless part $hat S $ furnishes flat directions to cancel the $O(N_g)$ D-term contributions of the visible sector. Novel dark matter candidates linked to flavour symmetry arise from both the BM sector and GUT sector minimal supersymmetric Standard Model singlet pseudo-Goldstones. These relics may be viable light($< 50 $ GeV) cold dark matter as reported by DAMA/LIBRA. In contrast to the new minimal supersymmetric SO(10) grand unified theory (NMSGUT) even sterile neutrinos can appear in certain branches of the flavour symmetry breaking without the tuning of couplings.
We show that Supersymmetric models with Type I seesaw neutrino masses support slow roll inflection point inflation. The inflaton is the D-flat direction labelled by the chiral invariant HLN composed of the Higgs(H), slepton(L) and conjugate sneutrino(N) superfields. The scale of inflation and fine tuning is set by the conjugate neutrino Majorana mass $M_{ u^c} sim 10^6-10^{12}$ GeV. The cubic term in the (quartic) inflaton potential is dominantly from superpotential (not soft Susy breaking) couplings. The tuning conditions are thus insensitive to soft supersymmetry breaking parameters and are generically much less stringent than for previous `A-term inflation scenarios controlled by mass scales $sim TeV$. WMAP limits on the ratio of tensor to scalar perturbations limit the scale $M$ controlling inflection point inflation: $M <7.9 times 10^{13}$ GeV. `Instant preheating is operative and dumps the inflaton energy into MSSM modes giving a high reheat temperature : $T_{rh} approx M_{ u^c}^{3/4}, 10^{6}$ GeV $sim 10^{11}- 10^{15} $ GeV. A large gravitino mass $> 50 $ TeV is therefore required to avoid over closure by reheat produced gravitinos. `Instant preheating and NLH inflaton facilitate production of right handed neutrinos during inflaton decay and thus non-thermal leptogenesis in addition to thermal leptogenesis. We show that the embedding in the fully realistic New Minimal Supersymmetric SO(10) GUT requires use of the heaviest righthanded neutrino mass as the controlling scale but the possibility of a measurable tensor scalar perturbation ratio seems marginal. We examine the parametric difficulties remaining.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا