Do you want to publish a course? Click here

We report detections of new exoplanets from a radial velocity (RV) survey of metal-rich FGK stars by using three telescopes. By optimizing our RV analysis method to long time-baseline observations, we have succeeded in detecting five new Jovian-planets around three metal-rich stars HD 1605, HD 1666, and HD 67087 with the masses of $1.3 M_{odot}$, $1.5 M_{odot}$, and $1.4 M_{odot}$, respectively. A K1 subgiant star HD 1605 hosts two planetary companions with the minimum masses of $ M_p sin i = 0.96 M_{mathrm{JUP}}$ and $3.5 M_{mathrm{JUP}}$ in circular orbits with the planets periods $P = 577.9$ days and $2111$ days, respectively. HD 1605 shows a significant linear trend in RVs. Such a system consisting of Jovian planets in circular orbits has rarely been found and thus HD 1605 should be an important example of a multi-planetary system that is likely unperturbed by planet-planet interactions. HD 1666 is a F7 main sequence star which hosts an eccentric and massive planet of $ M_p sin i = 6.4 M_{mathrm{JUP}}$ in the orbit with $a_{rm p} = 0.94$ AU and an eccentricity $e=0.63$. Such an eccentric and massive planet can be explained as a result of planet-planet interactions among Jovian planets. While we have found the large residuals of $mathrm{rms} = 35.6 mathrm{m s^{-1}}$, the periodogram analysis does not support any additional periodicities. Finally, HD 67087 hosts two planets of $ M_p sin i = 3.1 M_{mathrm{JUP}}$ and $4.9 M_{mathrm{JUP}}$ in orbits with $P=352.2$ days and $2374$ days, and $e=0.17$ and $0.76$, respectively. Although the current RVs do not lead to accurate determinations of its orbit and mass, HD 67087 c can be one of the most eccentric planets ever discovered in multiple systems.
We report the detection of a double planetary system orbiting around the evolved intermediate-mass star HD 4732 from precise Doppler measurements at Okayama Astrophysical Observatory (OAO) and Anglo-Australian Observatory (AAO). The star is a K0 subgiant with a mass of 1.7 M_sun and solar metallicity. The planetary system is composed of two giant planets with minimum mass of msini=2.4 M_J, orbital period of 360.2 d and 2732 d, and eccentricity of 0.13 and 0.23, respectively. Based on dynamical stability analysis for the system, we set the upper limit on the mass of the planets to be about 28 M_J (i>5 deg) in the case of coplanar prograde configuration.
We report the detections of substellar companions orbiting around seven evolved intermediate-mass stars from precise Doppler measurements at Okayama Astrophysical Observatory. o UMa (G4 II-III) is a giant with a mass of 3.1 M_sun and hosts a planet with minimum mass of m_2sini=4.1 M_J in an orbit with a period P=1630 d and an eccentricity e=0.13. This is the first planet candidate (< 13 M_J) ever discovered around stars more massive than 3 M_sun. o CrB (K0 III) is a 2.1 M_sun giant and has a planet of m_2sini=1.5 M_J in a 187.8 d orbit with e=0.19. This is one of the least massive planets ever discovered around ~2 M_sun stars. HD 5608 (K0 IV) is an 1.6 M_sun subgiant hosting a planet of m_2sini=1.4 M_J in a 793 d orbit with e=0.19. The star also exhibits a linear velocity trend suggesting the existence of an outer, more massive companion. 75 Cet (G3 III:) is a 2.5 M_sun giant hosting a planet of m_2sini=3.0 M_J in a 692 d orbit with e=0.12. The star also shows possible additional periodicity of about 200 d and 1880 d with velocity amplitude of ~7--10 m/s, although these are not significant at this stage. nu Oph (K0 III) is a 3.0 M_sun giant and has two brown-dwarf companions of m_2sini= 24 M_J and 27 M_J, in orbits with P=530.3 d and 3190 d, and e=0.126 and 0.17, respectively, which were independently announced by Quirrenbach et al. (2011). The ratio of the periods is close to 1:6, suggesting that the companions are in mean motion resonance. We also independently confirmed planets around k CrB (K0 III-IV) and HD 210702 (K1 IV), which had been announced by Johnson et al. (2008) and Johnson et al. (2007a), respectively. All of the orbital parameters we obtained are consistent with the previous results.
We present precise radial velocities of XO-2 taken with the Subaru HDS, covering two transits of XO-2b with an interval of nearly two years. The data suggest that the orbital eccentricity of XO-2b is consistent with zero within 2$sigma$ ($e=0.045pm0.024$) and the orbit of XO-2b is prograde (the sky-projected spin-orbit alignment angle $lambda=10^{circ}pm72^{circ}$). The poor constraint of $lambda$ is due to a small impact parameter (the orbital inclination of XO-2b is almost 90$^{circ}$). The data also provide an improved estimate of the mass of XO-2b as $0.62pm0.02$ $M_{rm Jup}$. We also find a long-term radial velocity variation in this system. Further radial velocity measurements are necessary to specify the cause of this additional variation.
We report the detections of two substellar companions orbiting around evolved intermediate-mass stars from precise Doppler measurements at Subaru Telescope and Okayama Astrophysical Observatory. HD 145457 is a K0 giant with a mass of 1.9 M_sun and has a planet of minimum mass m_2sini=2.9 M_J orbiting with period of P=176 d and eccentricity of e=0.11. HD 180314 is also a K0 giant with 2.6 M_sun and hosts a substellar companion of m_2sin i=22 M_J, which falls in brown-dwarf mass regime, in an orbit with P=396 d and e=0.26. HD 145457 b is one of the innermost planets and HD 180314 b is the seventh candidate of brown-dwarf-mass companion found around intermediate-mass evolved stars.
We report the detection of a substellar companion orbiting the G5 dwarf HD 16760 from the N2K sample. Precise Doppler measurements of the star from Subaru and Keck revealed a Keplerian velocity variation with a period of 466.47+-0.35 d, a semiamplitude of 407.71+-0.84 m/s, and an eccentricity of 0.084+-0.003. Adopting a stellar mass of 0.78+-0.05 M_Sun, we obtain a minimum mass for the companion of 13.13+-0.56 M_JUP, which is close to the planet/brown-dwarf transition, and the semimajor axis of 1.084+-0.023 AU. The nearly circular orbit despite the large mass and intermediate orbital period makes this companion unique among known substellar companions.
We report on the detection of four extrasolar planets orbiting evolved intermediate-mass stars from a precise Doppler survey of G and K giants at Okayama Astrophysical Observatory. All of the host stars are considered to be formerly early F-type or A-type dwarfs when they were on the main sequence. 14 And (K0 III) is a clump giant with a mass of 2.2 M_solar and has a planet of minimum mass m_2sin i=4.8 M_Jup in a nearly circular orbit with a 186 day period. This is one of the innermost planets around evolved intermediate-mass stars and such planets have only been discovered in clump giants. 81 Cet (G5 III) is a clump giant with 2.4 M_solar hosting a planet of m_2sin i=5.3 M_Jup in a 953 day orbit with an eccentricity of e=0.21. 6 Lyn (K0 IV) is a less evolved subgiant with 1.7 M_solar and has a planet of m_2sin i=2.4 M_Jup in a 899 day orbit with e=0.13. HD 167042 (K1 IV) is also a less evolved star with 1.5 M_solar hosting a planet of m_2sin i=1.6 M_Jup in a 418 day orbit with e=0.10. This planet was independently announced by Johnson et al. (2008, ApJ, 675, 784). All of the host stars have solar or sub-solar metallicity, which supports the lack of metal-rich tendency in planet-harboring giants in contrast to the case of dwarfs.
145 - Yoichi Takeda , Bunei Sato , 2008
The properties of 322 intermediate-mass late-G giants (comprising 10 planet-host stars) selected as the targets of Okayama Planet Search Program, many of which are red-clump giants, were comprehensively investigated by establishing their various stellar parameters (atmospheric parameters including turbulent velocity fields, metallicity, luminosity, mass, age, projected rotational velocity, etc.), and their photospheric chemical abundances for 17 elements, in order to study their mutual dependence, connection with the existence of planets, and possible evolution-related characteristics. The metallicity distribution of planet-host giants was found to be almost the same as that of non-planet-host giants, making marked contrast to the case of planet-host dwarfs tending to be metal-rich. Generally, the metallicities of these comparatively young (typical age of ~10^9 yr) giants tend to be somewhat lower than those of dwarfs at the same age, and super-metal-rich ([Fe/H] > 0.2) giants appear to be lacking. Apparent correlations were found between the abundances of C, O, and Na, suggesting that the surface compositions of these elements have undergone appreciable changes due to dredge-up of H-burning products by evolution-induced deep envelope mixing which becomes more efficient for higher-mass stars.
We report the detection of 3 new extrasolar planets from the precise Doppler survey of G and K giants at Okayama Astrophysical Observatory. The host stars, namely, 18 Del (G6 III), xi Aql (K0 III) and HD 81688 (K0 III-IV), are located at the clump region on the HR diagram with estimated masses of 2.1-2.3 M_solar. 18 Del b has a minimum mass of 10.3 M_Jup and resides in a nearly circular orbit with period of 993 days, which is the longest one ever discovered around evolved stars. xi Aql b and HD 81688 b have minimum masses of 2.8 and 2.7 M_Jup, and reside in nearly circular orbits with periods of 137 and 184 days, respectively, which are the shortest ones among planets around evolved stars. All of the substellar companions ever discovered around possible intermediate-mass (1.7-3.9 M_solar) clump giants have semimajor axes larger than 0.68 AU, suggesting the lack of short-period planets. Our numerical calculations suggest that Jupiter-mass planets within about 0.5 AU (even up to 1 AU depending on the metallicity and adopted models) around 2-3 M_solar stars could be engulfed by the central stars at the tip of RGB due to tidal torque from the central stars. Assuming that most of the clump giants are post-RGB stars, we can not distinguish whether the lack of short-period planets is primordial or due to engulfment by central stars. Deriving reliable mass and evolutionary status for evolved stars is highly required for further investigation of formation and evolution of planetary systems around intermediate-mass stars.
We present simultaneous photometric and spectroscopic observations of HD 17156b spanning a transit on UT 2007 November 12. This system is of special interest because of its 21-day period (unusually long for a transiting planet) and its high orbital eccentricity of 0.67. By modeling the Rossiter-McLaughlin effect, we find the angle between the sky projections of the orbital axis and the stellar rotation axis to be $62^{circ} pm 25^{circ}$. Such a large spin-orbit misalignment, as well as the large eccentricity, could be explained as the relic of a previous gravitational interaction with other planets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا