Do you want to publish a course? Click here

The ground state and thermodynamics of a generalized spin-1/2 Ising-Heisenberg diamond chain with the second-neighbor interaction between nodal spins are calculated exactly using the mapping method based on the decoration-iteration transformation. Rigorous results for the magnetization, susceptibility, and heat capacity are investigated in dependence on temperature and magnetic field for the frustrated diamond spin chain with the antiferromagnetic Ising and Heisenberg interactions. It is demonstrated that the second-neighbor interaction between nodal spins gives rise to a greater diversity of low-temperature magnetization curves, which may include an intermediate plateau at two-third of the saturation magnetization related to the classical ferrimagnetic (up-up-up-down-up-up-...) ground state with translationally broken symmetry besides an intermediate one-third magnetization plateau reflecting the translationally invariant quantum ferrimagnetic (monomer-dimer) spin arrangement.
49 - Bohdan Lisnyi 2013
The ground state and thermodynamic properties of an asymmetric diamond Ising--Hubbard chain with the on-site electron-electron attraction has been considered. The problem can be solved exactly using the decoration-iteration transformation. In the case of the antiferromagnetic Ising interaction, the influence of this attraction on the ground state and the temperature dependences of the magnetization, magnetic susceptibility, and specific heat has been studied.
The ground state and magnetization process of the mixed spin-(1,1/2) Ising diamond chain is exactly solved by employing the generalized decoration-iteration mapping transformation and the transfer-matrix method. The decoration-iteration transformation is first used in order to establish a rigorous mapping equivalence with the corresponding spin-1 Blume-Emery-Griffiths chain in a non-zero magnetic field, which is subsequently exactly treated within the framework of the transfer-matrix technique. It is shown that the ground-state phase diagram includes just four different ground states and the low-temperature magnetization curve may exhibit an intermediate plateau precisely at one half of the saturation magnetization. Our rigorous results disprove recent Monte Carlo simulations of Zihua Xin et al. [Z. Xin, S. Chen, C. Zhang, J. Magn. Magn. Mater. 324 (2012) 3704], which imply an existence of the other magnetization plateaus at 0.283 and 0.426 of the saturation magnetization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا