Do you want to publish a course? Click here

104 - Benny Sudakov , Jan Volec 2015
Let G be an n-vertex graph that contains linearly many cherries (i.e., paths on 3 vertices), and let c be a coloring of the edges of the complete graph K_n such that at each vertex every color appears only constantly many times. In 1979, Shearer conjectured that such a coloring c must contain a properly colored copy of G. We establish this conjecture in a strong form, showing that it holds even for graphs G with O(n^(4/3)) cherries and moreover this bound on the number of cherries is best possible up to a constant factor. We also prove that one can find a rainbow copy of such G in every edge-coloring of K_n in which all colors appear bounded number of times. Our proofs combine a framework of Lu and Szekely for using the lopsided Lovasz local lemma in the space of random bijections together with some additional ideas.
Let P_G(q) denote the number of proper q-colorings of a graph G. This function, called the chromatic polynomial of G, was introduced by Birkhoff in 1912, who sought to attack the famous four-color problem by minimizing P_G(4) over all planar graphs G. Since then, motivated by a variety of applications, much research was done on minimizing or maximizing P_G(q) over various families of graphs. In this paper, we study an old problem of Linial and Wilf, to find the graphs with n vertices and m edges which maximize the number of q-colorings. We provide the first approach which enables one to solve this problem for many nontrivial ranges of parameters. Using our machinery, we show that for each q >= 4 and sufficiently large m < kappa_q n^2 where kappa_q is approximately 1/(q log q), the extremal graphs are complete bipartite graphs minus the edges of a star, plus isolated vertices. Moreover, for q = 3, we establish the structure of optimal graphs for all large m <= n^2/4, confirming (in a stronger form) a conjecture of Lazebnik from 1989.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا