Do you want to publish a course? Click here

Wave propagation on the surface of cylinders exhibits interferometric self imaging, much like the Talbot effect in the near-field diffraction at periodic gratings. We report the experimental observation of the cylindrical Talbot carpet in weakly-guiding ring-core fibers for classical light fields. We further show that the ring-core fiber acts as a high-order optical beamsplitter for single photons, whose output can be controlled by the relative phase between the input light fields. By also demonstrating high-quality two-photon interference between indistinguishable photons sent into the ring-core fiber, our findings open the door to applications in optical telecommunications as a compact beam multiplexer as well as in quantum information processing tasks as a scalable realization of a linear optical network.
Classical rotations of asymmetric rigid bodies are unstable around the axis of intermediate momentof inertia, causing a flipping of rotor orientation. This effect, known as the tennis racket effect,quickly averages to zero in classical ensembles since the flipping period varies significantly uponapproaching the separatrix. Here, we explore the quantum rotations of rapidly spinning thermalasymmetric nanorotors and show that classically forbidden tunnelling gives rise to persistent tennisracket dynamics, in stark contrast to the classical expectation. We characterise this effect, demon-strating that quantum coherent flipping dynamics can persist even in the regime where millions ofangular momentum states are occupied. This persistent flipping offers a promising route for observ-ing and exploiting quantum effects in rotational degrees of freedom for molecules and nanoparticles.
Whether quantum physics is universally valid is an open question with far-reaching implications. Intense research is therefore invested into testing the quantum superposition principle with ever heavier and more complex objects. Here we propose a radically new, experimentally viable route towards studies at the quantum-to-classical borderline by probing the orientational quantum revivals of a nanoscale rigid rotor. The proposed interference experiment testifies a macroscopic superposition of all possible orientations. It requires no diffraction grating, uses only a single levitated particle, and works with moderate motional temperatures under realistic environmental conditions. The first exploitation of quantum rotations of a massive object opens the door to new tests of quantum physics with submicron particles and to quantum gyroscopic torque sensors, holding the potential to improve state-of-the art devices by many orders of magnitude.
We establish that matter-wave interference at near-resonant ultraviolet optical gratings can be used to spatially separate individual conformers of complex molecules. Our calculations show that the conformational purity of the prepared beam can be close to 100% and that all molecules remain in their electronic ground state. The proposed technique is independent of the dipole moment and the spin of the molecule and thus paves the way for structure-sensitive experiments with hydrocarbons and biomolecules, such as neurotransmitters and hormones, which evaded conformer-pure isolation so far
We show that periodically doped, flat surfaces can act as reflective diffraction gratings for atomic and molecular matter waves. The diffraction element is realized by exploiting that charged dopants locally suppress quantum reflection from the Casimir-Polder potential. We present a general quantum scattering theory for reflection off periodically charged surfaces and discuss the requirements for the observation of multiple diffraction peaks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا