Do you want to publish a course? Click here

Cyclotomic polynomials are basic objects in Number Theory. Their properties depend on the number of distinct primes that intervene in the factorization of their order, and the binary case is thus the first nontrivial case. This paper sees the vector of coefficients of the polynomial as a word on a ternary alphabet ${-1,0 ,+1}$. It designs an efficient algorithm that computes a compact representation of this word. This algorithm is of linear time with respect to the size of the output, and, thus, optimal. This approach allows to recover known properties of coefficients of binary cyclotomic polynomials, and extends to the case of polynomials associated with numerical semi-groups of dimension 2.
We exhibit a probabilistic algorithm which computes a rational point of an absolutely irreducible variety over a finite field defined by a reduced regular sequence. Its time--space complexity is roughly quadratic in the logarithm of the cardinality of the field and a geometric invariant of the input system (called its degree), which is always bounded by the Bezout number of the system. Our algorithm works for fields of any characteristic, but requires the cardinality of the field to be greater than a quantity which is roughly the fourth power of the degree of the input variety.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا