Do you want to publish a course? Click here

This document records the results of a comparison of the interferometer simulation Finesse against an analytic (MATLAB based) calculation of the alignment sensing signals of a Fabry Perot cavity. This task was started during the commissioning workshop at the LIGO Livingston site between the 28.1. and 1.02 2013 with the aim of creating a reference example for validating numerical simulation tools. The FFT based simulation OSCAR joined the battle later.
A comparison of analytic calculations and FINESSE simulations of interferometer responses to gravitational wave strain. The response to a gravitational wave is gradually built up from the effect of modulating a space by a gravitational wave to Sagnac and Michelson interferometers with and without arm cavities. This document details the steps necessary to perform such simulations in FINESSE and explicitly derives the interferometer response equations.
Finesse is a fast interferometer simulation program. For a given optical setup, it computes the light field amplitudes at every point in the interferometer assuming a steady state. To do so, the interferometer description is translated into a set of linear equations that are solved numerically. For convenience, a number of standard analyses can be performed automatically by the program, namely computing modulation-demodulation error signals, transfer functions, shot-noise-limited sensitivities, and beam shapes. Finesse can perform the analysis using the plane-wave approximation or Hermite-Gauss modes. The latter allows computation of the properties of optical systems like telescopes and the effects of mode matching and mirror angular positions.
Several km-scale gravitational-wave detectors have been constructed world wide. These instruments combine a number of advanced technologies to push the limits of precision length measurement. The core devices are laser interferometers of a new kind; developed from the classical Michelson topology these interferometers integrate additional optical elements, which significantly change the properties of the optical system. Much of the design and analysis of these laser interferometers can be performed using well-known classical optical techniques; however, the complex optical layouts provide a new challenge. In this review we give a textbook-style introduction to the optical science required for the understanding of modern gravitational wave detectors, as well as other high-precision laser interferometers. In addition, we provide a number of examples for a freely available interferometer simulation software and encourage the reader to use these examples to gain hands-on experience with the discussed optical methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا