Do you want to publish a course? Click here

An uplink system with a single antenna transmitter and a single receiver with a large number of antennas is considered. We propose an energy-detection-based single-shot noncoherent communication scheme which does not use the instantaneous channel state information (CSI), but rather only the knowledge of the channel statistics. The suggested system uses a transmitter that modulates information on the power of the symbols, and a receiver which measures only the average energy across the antennas. We propose constellation designs which are asymptotically optimal with respect to symbol error rate (SER) with an increasing number of antennas, for any finite signal to noise ratio (SNR) at the receiver, under different assumptions on the availability of CSI statistics (exact channel fading distribution or the first few moments of the channel fading distribution). We also consider the case of imperfect knowledge of the channel statistics and describe in detail the case when there is a bounded uncertainty on the moments of the fading distribution. We present numerical results on the SER performance achieved by these designs in typical scenarios and find that they may outperform existing noncoherent constellations, e.g., conventional Amplitude Shift Keying (ASK), and pilot-based schemes, e.g., Pulse Amplitude Modulation (PAM). We also observe that an optimized constellation for a specific channel distribution makes it very sensitive to uncertainties in the channel statistics. In particular, constellation designs based on optimistic channel conditions could lead to significant performance degradation in terms of the achieved symbol error rates.
DNA sequencing technology has advanced to a point where storage is becoming the central bottleneck in the acquisition and mining of more data. Large amounts of data are vital for genomics research, and generic compression tools, while viable, cannot offer the same savings as approaches tuned to inherent biological properties. We propose an algorithm to compress a target genome given a known reference genome. The proposed algorithm first generates a mapping from the reference to the target genome, and then compresses this mapping with an entropy coder. As an illustration of the performance: applying our algorithm to James Watsons genome with hg18 as a reference, we are able to reduce the 2991 megabyte (MB) genome down to 6.99 MB, while Gzip compresses it to 834.8 MB.
Blind Null Space Learning (BNSL) has recently been proposed for fast and accurate learning of the null-space associated with the channel matrix between a secondary transmitter and a primary receiver. In this paper we propose a channel tracking enhancement of the algorithm, namely the Blind Null Space Tracking (BNST) algorithm that allows transmission of information to the Secondary Receiver (SR) while simultaneously learning the null-space of the time-varying target channel. Specifically, the enhanced algorithm initially performs a BNSL sweep in order to acquire the null space. Then, it performs modified Jacobi rotations such that the induced interference to the primary receiver is kept lower than a given threshold $P_{Th}$ with probability $p$ while information is transmitted to the SR simultaneously. We present simulation results indicating that the proposed approach has strictly better performance over the BNSL algorithm for channels with independent Rayleigh fading with a small Doppler frequency.
Consider any discrete memoryless channel (DMC) with arbitrarily but finite input and output alphabets X, Y respectively. Then, for any capacity achieving input distribution all symbols occur less frequently than 1-1/e$. That is, [ maxlimits_{x in mathcal{X}} P^*(x) < 1-frac{1}{e} ] oindent where $P^*(x)$ is a capacity achieving input distribution. Also, we provide sufficient conditions for which a discrete distribution can be a capacity achieving input distribution for some DMC channel. Lastly, we show that there is no similar restriction on the capacity achieving output distribution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا