Do you want to publish a course? Click here

We consider SU(3)-equivariant dimensional reduction of Yang-Mills theory on Kaehler manifolds of the form M x SU(3)/H, with H = SU(2) x U(1) or H = U(1) x U(1). The induced rank two quiver gauge theories on M are worked out in detail for representations of H which descend from a generic irreducible SU(3)-representation. The reduction of the Donaldson-Uhlenbeck-Yau equations on these spaces induces nonabelian quiver vortex equations on M, which we write down explicitly. When M is a noncommutative deformation of the space C^d, we construct explicit BPS and non-BPS solutions of finite energy for all cases. We compute their topological charges in three different ways and propose a novel interpretation of the configurations as states of D-branes. Our methods and results generalize from SU(3) to any compact Lie group.
138 - Alexander D. Popov 2008
It is well known that there are no static non-Abelian monopole solutions in pure Yang-Mills theory on Minkowski space R^{3,1}. We show that such solutions exist in SU(N) gauge theory on the spaces R^2times S^2 and R^1times S^1times S^2 with Minkowski signature (-+++). In the temporal gauge they are solutions of pure Yang-Mills theory on T^1times S^2, where T^1 is R^1 or S^1. Namely, imposing SO(3)-invariance and some reality conditions, we consistently reduce the Yang-Mills model on the above spaces to a non-Abelian analog of the phi^4 kink model whose static solutions give SU(N) monopole (-antimonopole) configurations on the space R^{1,1}times S^2 via the above-mentioned correspondence. These solutions can also be considered as instanton configurations of Yang-Mills theory in 2+1 dimensions. The kink model on R^1times S^1 admits also periodic sphaleron-type solutions describing chains of n kink-antikink pairs spaced around the circle S^1 with arbitrary n>0. They correspond to chains of n static monopole-antimonopole pairs on the space R^1times S^1times S^2 which can also be interpreted as instanton configurations in 2+1 dimensional pure Yang-Mills theory at finite temperature (thermal time circle). We also describe similar solutions in Euclidean SU(N) gauge theory on S^1times S^3 interpreted as chains of n instanton-antiinstanton pairs.
131 - Alexander D. Popov 2008
We consider U(n+1) Yang-Mills instantons on the space Sigmatimes S^2, where Sigma is a compact Riemann surface of genus g. Using an SU(2)-equivariant dimensional reduction, we show that the U(n+1) instanton equations on Sigmatimes S^2 are equivalent to non-Abelian vortex equations on Sigma. Solutions to these equations are given by pairs (A,phi), where A is a gauge potential of the group U(n) and phi is a Higgs field in the fundamental representation of the group U(n). We briefly compare this model with other non-Abelian Higgs models considered recently. Afterwards we show that for g>1, when Sigmatimes S^2 becomes a gravitational instanton, the non-Abelian vortex equations are the compatibility conditions of two linear equations (Lax pair) and therefore the standard methods of integrable systems can be applied for constructing their solutions.
We consider a supersymmetric Bogomolny-type model in 2+1 dimensions originating from twistor string theory. By a gauge fixing this model is reduced to a modified U(n) chiral model with N<=8 supersymmetries in 2+1 dimensions. After a Moyal-type deformation of the model, we employ the dressing method to explicitly construct multi-soliton configurations on noncommutative R^{2,1} and analyze some of their properties.
We construct explicit BPS and non-BPS solutions of the Yang-Mills equations on noncommutative spaces R^{2n}_theta x G/H which are manifestly G-symmetric. Given a G-representation, by twisting with a particular bundle over G/H, we obtain a G-equivariant U(k) bundle with a G-equivariant connection over R^{2n}_theta x G/H. The U(k) Donaldson-Uhlenbeck-Yau equations on these spaces reduce to vortex-type equations in a particular quiver gauge theory on R^{2n}_theta. Seiberg-Witten monopole equations are particular examples. The noncommutative BPS configurations are formulated with partial isometries, which are obtained from an equivariant Atiyah-Bott-Shapiro construction. They can be interpreted as D0-branes inside a space-filling brane-antibrane system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا