Do you want to publish a course? Click here

Understanding the set of elementary steps and kinetics in each reaction is extremely valuable to make informed decisions about creating the next generation of catalytic materials. With physical and mechanistic complexity of industrial catalysts, it is critical to obtain kinetic information through experimental methods. As such, this work details a methodology based on the combination of transient rate/concentration dependencies and machine learning to measure the number of active sites, the individual rate constants, and gain insight into the mechanism under a complex set of elementary steps. This new methodology was applied to simulated transient responses to verify its ability to obtain correct estimates of the micro-kinetic coefficients. Furthermore, experimental CO oxidation data was analyzed to reveal the Langmuir-Hinshelwood mechanism driving the reaction. As oxygen accumulated on the catalyst, a transition in the mechanism was clearly defined in the machine learning analysis due to the large amount of kinetic information available from transient reaction techniques. This methodology is proposed as a new data driven approach to characterize how materials control complex reaction mechanisms relying exclusively on experimental data.
An open-source, Python-based Temporal Analysis of Products (TAP) reactor simulation and processing program is introduced. TAPsolver utilizes algorithmic differentiation for the calculation of highly accurate derivatives, which are used to perform sensitivity analyses and PDE-constrained optimization. The tool supports constraints to ensure thermodynamic consistency, which can lead to more accurate parameters and assist in mechanism discrimination. The mathematical and structural details of TAPsolver are outlined, as well as validation of the forward and inverse problems against well-studied prototype problems. Benchmarks of the code are presented, and a case study for extracting thermodynamically-consistent kinetic parameters from experimental TAP measurements of CO oxidation on supported platinum particles is presented. TAPsolver will act as a foundation for future development and dissemination of TAP data processing techniques.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا