Do you want to publish a course? Click here

Interplay of spin, charge, orbital and lattice degrees of freedom in oxide heterostructures results in a plethora of fascinating properties, which can be exploited in new generations of electronic devices with enhanced functionalities. The paradigm example is the interface between the two band insulators LaAlO3 and SrTiO3 (LAO/STO) that hosts two-dimensional electron system (2DES). Apart from the mobile charge carriers, this system exhibits a range of intriguing properties such as field effect, superconductivity and ferromagnetism, whose fundamental origins are still debated. Here, we use soft-X-ray angle-resolved photoelectron spectroscopy to penetrate through the LAO overlayer and access charge carriers at the buried interface. The experimental spectral function directly identifies the interface charge carriers as large polarons, emerging from coupling of charge and lattice degrees of freedom, and involving two phonons of different energy and thermal activity. This phenomenon fundamentally limits the carrier mobility and explains its puzzling drop at high temperatures.
In this work the equivariant signature of a manifold with proper action of a discrete group is defined as an invariant of equivariant bordisms. It is shown that the computation of this signature can be reduced to its computation on fixed points sets equipped with their tubular neighborhoods. It is given a description of the equivariant vector bundles with action of a discrete group $G$ for the case when the action over the base is proper quasi-free, i.e. the stationary subgroup of any point is finite. The description is given in terms of some classifying space.
The charge dynamics in weakly hole doped high temperature superconductors is studied in terms of the accurate numerical solution to a model of a single hole interacting with a quantum lattice in an antiferromagnetic background, and accurate far-infrared ellipsometry measurements. The experimentally observed two electronic bands in the infrared spectrum can be identified in terms of the interplay between the electron correlation and electron-phonon interaction resolving the long standing mystery of the mid-infrared band.
We develop a novel self-consistent approach for studying the angle resolved photoemission spectra (ARPES) of a hole in the t-J-Holstein model giving perfect agreement with numerically exact Diagrammatic Monte Carlo data at zero temperature for all regimes of electron-phonon coupling. Generalizing the approach to finite temperatures we find that the anomalous temperature dependence of the ARPES in undoped cuprates is explained by cooperative interplay of coupling of the hole to magnetic fluctuations and strong electron-phonon interaction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا