Do you want to publish a course? Click here

We present a field theory analysis of a model of two SU(2n)-invariant magnetic chains coupled by a generic interaction preserving time reversal and inversion symmetry. Contrary to the SU(2)-invariant case the zero-temperature phase diagram of such two-leg spin ladder does not contain topological phases. Only generalized Valence Bond Solid phases are stabilized when n>1 with different wave vectors and ground-state degeneracies. In particular, we find a phase which is made of a cluster of 2n spins put in an SU(2n) singlet state. For n=3, this cluster phase is relevant to ytterbium ultracold atoms, with an emergent SU(6) symmetry, loaded in double well optical lattice.
We report a combined experimental and theoretical study of the unusual ferromagnetism in the one-dimensional copper-iridium oxide Sr$_3$CuIrO$_6$. Utilizing Ir $L_3$ edge resonant inelastic x-ray scattering, we reveal a large gap magnetic excitation spectrum. We find that it is caused by an unusual exchange anisotropy generating mechanism, namely, strong ferromagnetic anisotropy arising from antiferromagnetic superexchange, driven by the alternating strong and weak spin-orbit coupling on the $5d$ Ir and 3d Cu magnetic ions, respectively. From symmetry consideration, this novel mechanism is generally present in systems with edge-sharing Cu$^{2+}$O$_4$ plaquettes and Ir$^{4+}$O$_6$ octahedra. Our results point to unusual magnetic behavior to be expected in mixed 3d-5d transition-metal compounds via exchange pathways that are absent in pure 3d or 5d compounds.
We present new high resolution angle resolved photoemission (ARPES) data for K$_{0.3}$MoO$_3$ (blue bronze) and propose a novel theoretical description of these results. The observed Fermi surface, with two quasi-one-dimensional sheets, is consistent with a ladder material with a weak inter-ladder coupling. Hence, we base our description on spectral properties of one-dimensional ladders. The marked broadening of the ARPES lineshape, a significant fraction of an eV, is interpreted in terms of spin-charge separation. A high energy feature, which is revealed for the first time in the spectra near the Fermi momentum thanks to improved energy resolution, is seen as a signature of a higher energy bound state of soliton excitations on a ladder.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا