Do you want to publish a course? Click here

The hyperkagome antiferromagnet Na$_{4}$Ir$_3$O$_8$ represents the first genuine candidate for the realisation of a three-dimensional quantum spin-liquid. It can also be doped towards a metallic state, thus offering a rare opportunity to explore the nature of the metal-insulator transition in correlated, frustrated magnets. Here we report thermodynamic and transport measurements in both metallic and weakly insulating single crystals down to 150 mK. While in the metallic sample the phonon thermal conductivity ($kappa^{ph}$) is almost in the boundary scattering regime, in the insulating sample we find a large reduction $kappa^{ph}$ over a very wide temperature range. This result can be ascribed to the scattering of phonons off nanoscale disorder or off the gapless magnetic excitations that are seen in the low-temperature specific heat. This works highlights the peculiarity of the metal-insulator transition in Na$_{3+x}$Ir$_3$O$_8$ and demonstrates the importance of the coupling between lattice and spin degrees of freedom in the presence of strong spin-orbit coupling.
Ta2PdxS5 (x < 1.0) was found to show superconductivity at Tc ~ 6 K. The temperature dependent resistivity of single crystalline Ta2Pd0.92S5 showed that the system is strongly disordered due to Pd deficiencies and close to Anderson localized state. Superconductivity in the dirty limit as well as the temperature dependence of specific heat C(T) implies that superconductivity is s-wave. The upper critical field Hc2 at T = 0 K limit with the magnetic field parallel to the TaS6 chains was found to be as high as 31 T, exceeding the Pauli paramagnetic limit Hp = 10.2 T by a factor of 3. We argue that the absence of the paramagnetic pair-breaking originates from strong spin-orbit scattering due to Pd deficiencies embedded in the periodic lattice of heavy 5d Ta and 4d Pd.
We report a comparative study of the specific heat, electrical resistivity and thermal conductivity of the quasi-two-dimensional purple bronzes Na$_{0.9}$Mo$_6$O$_{17}$ and K$_{0.9}$Mo$_6$O$_{17}$, with special emphasis on the behavior near their respective charge-density-wave transition temperatures $T_P$. The contrasting behavior of both the transport and the thermodynamic properties near $T_P$ is argued to arise predominantly from the different levels of intrinsic disorder in the two systems. A significant proportion of the enhancement of the thermal conductivity above $T_P$ in Na$_{0.9}$Mo$_6$O$_{17}$, and to a lesser extent in K$_{0.9}$Mo$_6$O$_{17}$, is attributed to the emergence of phason excitations.
The upper critical field $H_{c2}$ of purple bronze Li$_{0.9}$Mo$_6$O$_{17}$ is found to exhibit a large anisotropy, in quantitative agreement with that expected from the observed electrical resistivity anisotropy. With the field aligned along the most conducting axis, $H_{c2}$ increases monotonically with decreasing temperature to a value five times larger than the estimated paramagnetic pair-breaking field. Theories for the enhancement of $H_{c2}$ invoking spin-orbit scattering or strong-coupling superconductivity are shown to be inadequate in explaining the observed behavior, suggesting that the pairing state in Li$_{0.9}$Mo$_6$O$_{17}$ is unconventional and possibly spin-triplet.
Pulsed field measurements of the Hall resistivity and magnetoresistance of underdoped YBa2Cu4O8 are analyzed self-consistently using a simple model based on coexisting electron and hole carriers. The resultant mobilities and Hall numbers are found to vary markedly with temperature. The conductivity of the hole carriers drops by one order of magnitude below 30 K, explaining the absence of quantum oscillations from these particular pockets. Meanwhile the Hall coefficient of the electron carriers becomes strongly negative below 50 K. The overall quality of the fits not only provides strong evidence for Fermi-surface reconstruction in Y-based cuprates, it also strongly constrains the type of reconstruction that might be occurring.
We report the observation of Shubnikov-de Haas oscillations in the underdoped cuprate superconductor YBa$_2$Cu$_4$O$_8$ (Y124). For field aligned along the c-axis, the frequency of the oscillations is $660pm 30$ T, which corresponds to $sim 2.4$ % of the total area of the first Brillouin zone. The effective mass of the quasiparticles on this orbit is measured to be $2.7pm0.3$ times the free electron mass. Both the frequency and mass are comparable to those recently observed for ortho-II YBa$_2$Cu$_3$O$_{6.5}$ (Y123-II). We show that although small Fermi surface pockets may be expected from band structure calculations in Y123-II, no such pockets are predicted for Y124. Our results therefore imply that these small pockets are a generic feature of the copper oxide plane in underdoped cuprates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا