Do you want to publish a course? Click here

Recent ground based near-IR studies of stellar clusters in nearby galaxies have suggested that young clusters remain embedded for 7-10Myr in their progenitor molecular cloud, in conflict with optical based studies which find that clusters are exposed after 1-3Myr. Here, we investigate the role that spatial resolution plays in this apparent conflict. We use a recent catalogue of young ($<10$~Myr) massive ($>5000$~msun) clusters in the nearby spiral galaxy, M83, along with Hubble Space Telescope (HST) imaging in the optical and near-IR, and ground based near-IR imaging, to see how the colours (and hence estimated properties such as age and extinction) are affected by the aperture size employed, in order to simulate studies of differing resolution. We find that the near-IR is heavily affected by the resolution, and when aperture sizes $>40$~pc are used, all young/blue clusters move red-ward in colour space, which results in their appearance as heavily extincted clusters. However, this is due to contamination from nearby sources and nebular emission, and is not an extinction effect. Optical colours are much less affected by resolution. Due to the larger affect of contamination in the near-IR, we find that, in some cases, clusters will appear to show near-IR excess when large ($>20$~pc) apertures are used. Our results explain why few young ($<6$~Myr), low extinction ($av < 1$~mag) clusters have been found in recent ground based near-IR studies of cluster populations, while many such clusters have been found in higher resolution HST based studies. Additionally, resolution effects appear to (at least partially) explain the origin of the near-IR excess that has been found in a number of extragalactic YMCs.
57 - N. Bastian , A. Adamo , M. Gieles 2011
Using multi-wavelength imaging from the Wide Field Camera 3 on the Hubble Space Telescope we study the stellar cluster populations of two adjacent fields in the nearby face-on spiral galaxy, M83. The observations cover the galactic centre and reach out to ~6 kpc, thereby spanning a large range of environmental conditions, ideal for testing empirical laws of cluster disruption. The clusters are selected by visual inspection to be centrally concentrated, symmetric, and resolved on the images. We find that a large fraction of objects detected by automated algorithms (e.g. SExtractor or Daofind) are not clusters, but rather are associations. These are likely to disperse into the field on timescales of tens of Myr due to their lower stellar densities and not due to gas expulsion (i.e. they were never gravitationally bound). We split the sample into two discrete fields (inner and outer regions of the galaxy) and search for evidence of environmentally dependent cluster disruption. Colour-colour diagrams of the clusters, when compared to simple stellar population models, already indicate that a much larger fraction of the clusters in the outer field are older by tens of Myr than in the inner field. This impression is quantified by estimating each clusters properties (age, mass, and extinction) and comparing the age/mass distributions between the two fields. Our results are inconsistent with universal age and mass distributions of clusters, and instead show that the ambient environment strongly affects the observed populations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا