ترغب بنشر مسار تعليمي؟ اضغط هنا

عمر الباريون المضحكين مرتين

Lifetime of doubly charmed baryons

179   0   0.0 ( 0 )
 نشر من قبل Li Tong
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we evaluate the lifetimes of the doubly charmed baryons $Xi_{cc}^{+}$, $Xi_{cc}^{++}$ and $Omega_{cc}^{+}$. We carefully calculate the non-spectator contributions at the quark level where the Cabibbo-suppressed diagrams are also included. The hadronic matrix elements are evaluated in the simple non-relativistic harmonic oscillator model. Our numerical results are generally consistent with that obtained by other authors who used the diquark model. However, all the theoretical predictions on the lifetimes are one order larger than the upper limit set by the recent SELEX measurement. This discrepancy would be clarified by the future experiment, if more accurate experiment still confirms the value of the SELEX collaboration, there must be some unknown mechanism to be explored.

قيم البحث

اقرأ أيضاً

The hadronic two-body weak decays of the doubly charmed baryons $Xi_{cc}^{++}, Xi_{cc}^+$ and $Omega_{cc}^+$ are studied in this work. To estimate the nonfactorizable contributions, we work in the pole model for the $P$-wave amplitudes and current al gebra for $S$-wave ones. For the $Xi_{cc}^{++}to Xi_c^+pi^+$ mode, we find a large destructive interference between factorizable and nonfactorizable contributions for both $S$- and $P$-wave amplitudes. Our prediction of $sim 0.70%$ for its branching fraction is smaller than the earlier estimates in which nonfactorizable effects were not considered, but agrees nicely with the result based on an entirely different approach, namely, the covariant confined quark model. On the contrary, a large constructive interference was found in the $P$-wave amplitude by Dhir and Sharma, leading to a branching fraction of order $(7-16)%$. Using the current results for the absolute branching fractions of $(Lambda_c^+,Xi_c^+)to p K^-pi^+$ and the LHCb measurement of $Xi_{cc}^{++}toXi_c^+pi^+$ relative to $Xi_{cc}^{++}toLambda_c^+ K^- pi^+pi^+$, we obtain $B(Xi_{cc}^{++}toXi_c^+pi^+)_{rm expt}approx (1.83pm1.01)%$ after employing the latest prediction of $B(Xi_{cc}^{++}toSigma_c^{++}overline{K}^{*0})$. Our prediction of $mathcal{B}(Xi_{cc}^{++}toXi_c^+pi^+)approx 0.7%$ is thus consistent with the experimental value but in the lower end. It is important to pin down the branching fraction of this mode in future study. Factorizable and nonfactorizable $S$-wave amplitudes interfere constructively in $Xi_{cc}^+toXi_c^0pi^+$. Its large branching fraction of order 4% may enable experimentalists to search for the $Xi_{cc}^+$ through this mode. That is, the $Xi_{cc}^+$ is reconstructed through the $Xi_{cc}^+toXi_c^0pi^+$ followed by the decay chain $Xi_c^0to Xi^-pi^+to ppi^-pi^-pi^+$.
Doubly Cabibbo-suppressed (DCS) nonleptonic weak decays of antitriplet charmed baryons are studied systematically in this work. The factorizable and nonfactorizable contributions can be classified explicitly in the topological-diagram approach and tr eated separately. In particular, the evaluation of nonfactorizable terms is based on the pole model in conjunction with current algebra. All three types of relevant non-perturbative parameters contributing factorizable and nonfactorizable terms are estimated in the MIT bag model. Branching fractions of all the DCS decays are predicted to be of order $10^{-4}sim 10^{-6}$. In particular, we find that the three modes $Xi_c^+to Sigma^+ K^0, Sigma^0 K^+$ and $Xi_c^0to Sigma^- K^+$ are as large as $(1sim 2)times 10^{-4}$, which are the most promising DCS channels to be measured. We also point out that the two DCS modes $Xi_c^+to Sigma^+ K^0$ and $Xi_c^0to Sigma^0 K^0$ are possible to be distinguished from $Xi_c^+to Sigma^+ K_S$ and $Xi_c^0to Sigma^0 K_S$. The decay asymmetries for all the channels with a kaon in their final states are found to be large in magnitude and negative in sign.
97 - Y. Kato , T. Iijima , I. Adachi 2013
We report results of a study of doubly charmed baryons and charmed strange baryons. The analysis is performed using a 980 fb^-1 data sample collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. We search for doubly charmed baryons Xi_cc^+(+) with the Lambda_c^+K^-pi^+(pi^+) and Xi_c^0pi^+(pi^+) final states. No significant signal is observed. We also search for two excited charmed strange baryons, Xi_c(3055)^+ and Xi_c(3123)^+ with the Sigma_c^++(2455)K^- and Sigma_c^++(2520)K^- final states. The Xi_c(3055)^+ signal is observed with a significance of 6.6 standard deviations including systematic uncertainty, while no signature of the Xi_c(3123)^+ is seen. We also study properties of the Xi_c(2645)^+ and measure a width of 2.6 +- 0.2 (stat) +- 0.4 (syst) MeV/c^2, which is the first significant determination.
The chiral corrections to the magnetic moments of the spin-$frac{1}{2}$ doubly charmed baryons are systematically investigated up to next-to-next-to-leading order with heavy baryon chiral perturbation theory (HBChPT). The numerical results are calcul ated up to next-to-leading order: $mu_{Xi^{++}_{cc}}=-0.25mu_{N}$, $mu_{Xi^{+}_{cc}}=0.85mu_{N}$, $mu_{Omega^{+}_{cc}}=0.78mu_{N}$. We also calculate the magnetic moments of the other doubly heavy baryons, including the doubly bottomed baryons (bbq) and the doubly heavy baryons containing a light quark, a charm quark and a bottom quark (${bc}q$ and $[bc]q$): $mu_{Xi^{0}_{bb}}=-0.84mu_{N}$, $mu_{Xi^{-}_{bb}}=0.26mu_{N}$, $mu_{Omega^{-}_{bb}}=0.19mu_{N}$, $mu_{Xi^{+}_{{bc}q}}=-0.54mu_{N}$, $mu_{Xi^{0}_{{bc}q}}=0.56mu_{N}$, $mu_{Omega^{0}_{{bc}q}}=0.49mu_{N}$, $mu_{Xi^{+}_{[bc]q}}=0.69mu_{N}$, $mu_{Xi^{0}_{[bc]q}}=-0.59mu_{N}$, $mu_{Omega^{0}_{[bc]q}}=0.24mu_{N}$.
We present the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 16^3 X 128, with inverse spacing in temporal direction 1/a_t = 5.67(4) GeV and with a pion mass of about 390 MeV. A large set of baryonic operators that respect the symmetries of the lattice yet which retain a memory of their continuum analogues are used. These operators transform as irreducible representations of SU(3) symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) for spatial symmetry. The distillation method is utilized to generate baryon correlation functions which are analysed using the variational fitting method to extract excited states. The lattice spectra obtained have baryonic states with well-defined total spins up to 7/2 and the pattern of low lying states does not support the diquark picture for doubly charmed baryons. On the contrary the calculated spectra are remarkably similar to the expectations from models with an SU(6)X O(3) symmetry. Various spin dependent energy splittings between the extracted states are also evaluated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا