ﻻ يوجد ملخص باللغة العربية
Heterostructures including the members of the 6.1{AA} semiconductor family (AlSb, GaSb, and InAs) are used in infrared optoelectronic devices as well as a variety of other applications. Short-period superlattices of these materials are also of interest for creating composite materials with designer infrared dielectric functions. The conditions needed to create sharp InAs/GaSb and InAs/AlSb interfaces are well known, but the AlSb/GaSb interface is much less well-understood. In this article, we test a variety of interventions designed to improve interface sharpness in AlSb/GaSb short-period superlattices. These interventions include substrate temperature, III:Sb flux ratio, and the use of a bismuth surfactant. Superlattices are characterized by high-resolution x-ray diffraction and infrared spectroscopy. We find that AlSb/GaSb short-period superlattices have a wide growth window over which sharp interfaces can be obtained.
The effect of intermixing at the interface of short period PbTiO$_3$/SrTiO$_3$ superlattices is studied using first-principles density functional theory. The results indicate that interfacial intermixing significantly enhances the polarization within
We examine the possibility of intrinsic interface states bound to the plane of In-Sb chemical bonds at InAs/AlSb interfaces. Careful parameterization of the bulk materials in the frame of the extended basis spds^* tight-binding model and recent progr
We report an enhancement of the electron spin relaxation time (T1) in a (110) InAs/GaSb superlattice by more than an order of magnitude (25 times) relative to the corresponding (001) structure. The spin dynamics were measured using polarization sensi
We use density-functional theory to study the structure of AlSb(001) and GaSb(001) surfaces. Based on a variety of reconstruction models, we construct surface stability diagrams for AlSb and GaSb under different growth conditions. For AlSb(001), the
We have studied a series of InAs/GaSb coupled quantum wells using magneto-infrared spectroscopy for high magnetic fields up to 33T within temperatures ranging from 4K to 45K in both Faraday and tilted field geometries. This type of coupled quantum we