ﻻ يوجد ملخص باللغة العربية
Answering a key point left open in a recent work of Bongers, Guo, Li and Wick, we provide the following lower bound $$ |b|_{text{BMO}_{gamma}(mathbb{R}^2)}lesssim |[b,H_{gamma}]|_{L^p(mathbb{R}^2)to L^p(mathbb{R}^2)}, $$ where $H_{gamma}$ is the parabolic Hilbert transform.
Given two intervals $I, J subset mathbb{R}$, we ask whether it is possible to reconstruct a real-valued function $f in L^2(I)$ from knowing its Hilbert transform $Hf$ on $J$. When neither interval is fully contained in the other, this problem has a u
In limited data computerized tomography, the 2D or 3D problem can be reduced to a family of 1D problems using the differentiated backprojection (DBP) method. Each 1D problem consists of recovering a compactly supported function $f in L^2(mathcal F)$,
The authors use steepest descent ideas to obtain a priori $L^p$ estimates for solutions of Riemann-Hilbert Problems. Such estimates play a crucial role, in particular, in analyzing the long-time behavior of solutions of the perturbed nonlinear Schrodinger equation on the line.
We prove an almost constant lower bound of the isoperimetric coefficient in the KLS conjecture. The lower bound has the dimension dependency $d^{-o_d(1)}$. When the dimension is large enough, our lower bound is tighter than the previous best bound wh
We study the $L^p$ boundedness of Riesz transform as well as the reverse inequality on Riemannian manifolds and graphs under the volume doubling property and a sub-Gaussian heat kernel upper bound. We prove that the Riesz transform is then bounded on