ترغب بنشر مسار تعليمي؟ اضغط هنا

An overall view of temperature oscillations in the solar chromosphere with ALMA

115   0   0.0 ( 0 )
 نشر من قبل Shahin Jafarzadeh
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By direct measurements of the gas temperature, the Atacama Large Millimeter/sub-millimeter Array (ALMA) has yielded a new diagnostic tool to study the solar chromosphere. Here we present an overview of the brightness-temperature fluctuations from several high-quality and high-temporal-resolution (i.e., 1 and 2 sec cadence) time series of images obtained during the first two years of solar observations with ALMA, in Band 3 and Band 6, centred at around 3 mm (100 GHz) and 1.25 mm (239 GHz), respectively. The various datasets represent solar regions with different levels of magnetic flux. We perform Fast Fourier and Lomb-Scargle transforms to measure both the spatial structuring of dominant frequencies and the average global frequency distributions of the oscillations (i.e., averaged over the entire field of view). We find that the observed frequencies significantly vary from one dataset to another, which is discussed in terms of the solar regions captured by the observations (i.e., linked to their underlying magnetic topology). While the presence of enhanced power within the frequency range 3-5 mHz is found for the most magnetically quiescent datasets, lower frequencies dominate when there is significant influence from strong underlying magnetic field concentrations (present inside and/or in the immediate vicinity of the observed field of view). We discuss here a number of reasons which could possibly contribute to the power suppression at around 5.5 mHz in the ALMA observations. However, it remains unclear how other chromospheric diagnostics (with an exception of Halpha line-core intensity) are unaffected by similar effects, i.e., they show very pronounced 3-min oscillations dominating the dynamics of the chromosphere, whereas only a very small fraction of all the pixels in the ten ALMA data sets analysed here show peak power near 5.5 mHz.

قيم البحث

اقرأ أيضاً

In this work we use solar observations with the ALMA radio telescope at the wavelength of 1.21 mm. The aim of the analysis is to improve understanding of the solar chromosphere, a dynamic layer in the solar atmosphere between the photosphere and coro na. The study has an observational and a modeling part. In the observational part full-disc solar images are analyzed. Based on a modified FAL atmospheric model, radiation models for various observed solar structures are developed. Finally, the observational and modeling results are compared and discussed.
We present the first high-resolution Atacama Large Millimeter/Submillimeter Array (ALMA) observations of a sunspot at wavelengths of 1.3 mm and 3 mm, obtained during the solar ALMA Science Verification campaign in 2015, and compare them with the pred ictions of semi-empirical sunspot umbral/penumbral atmosphere models. For the first time millimeter observations of sunspots have resolved umbral/penumbral brightness structure at the chromospheric heights, where the emission at these wavelengths is formed. We find that the sunspot umbra exhibits a radically different appearance at 1.3 mm and 3 mm, whereas the penumbral brightness structure is similar at the two wavelengths. The inner part of the umbra is ~600 K brighter than the surrounding quiet Sun (QS) at 3 mm and is ~700 K cooler than the QS at 1.3 mm, being the coolest part of sunspot at this wavelength. On average, the brightness of the penumbra at 3 mm is comparable to the QS brightness, while at 1.3 mm it is ~1000 K brighter than the QS. Penumbral brightness increases towards the outer boundary in both ALMA bands. Among the tested umbral models, that of Severino et al. (1994) provides the best fit to the observational data, including both the ALMA data analyzed in this study and data from earlier works. No penumbral model amongst those considered here gives a satisfactory fit to the currently available measurements. ALMA observations at multiple mm wavelengths can be used for testing existing sunspot models, and serve as an important input to constrain new empirical models.
We present observational constraints on the solar chromospheric heating contribution from acoustic waves with frequencies between 5 and 50 mHz. We utilize observations from the Dunn Solar Telescope in New Mexico complemented with observations from th e Atacama Large Millimeter Array collected on 2017 April 23. The properties of the power spectra of the various quantities are derived from the spectral lines of Ca II 854.2 nm, H I 656.3 nm, and the millimeter continuum at 1.25 mm and 3 mm. At the observed frequencies the diagnostics almost all show a power law behavior, whose particulars (slope, peak and white noise floors) are correlated with the type of solar feature (internetwork, network, plage). In order to disentangle the vertical versus transverse plasma motions we examine two different fields of view; one near disk center and the other close to the limb. To infer the acoustic flux in the middle chromosphere, we compare our observations with synthetic observables from the time-dependent radiative hydrodynamic RADYN code. Our findings show that acoustic waves carry up to about 1 kW m$^{-2}$ of energy flux in the middle chromosphere, which is not enough to maintain the quiet chromosphere, contrary to previous publications.
We present observations of the solar chromosphere obtained simultaneously with the Atacama Large Millimeter/submillimeter Array (ALMA) and the Interface Region Imaging Spectrograph (IRIS). The observatories targeted a chromospheric plage region of wh ich the spatial distribution (split between strongly and weakly magnetized regions) allowed the study of linear-like structures in isolation, free of contamination from background emission. Using these observations in conjunction with a radiative magnetohydrodynamic 2.5D model covering the upper convection zone all the way to the corona that considers non-equilibrium ionization effects, we report the detection of an on-disk chromospheric spicule with ALMA and confirm its multithermal nature.
The absolute brightness temperature of the Sun at millimeter wavelengths is an important diagnostic of the solar chromosphere. Because the Sun is so bright, measurement of this property usually involves the operation of telescopes under extreme condi tions and requires a rigorous performance assessment of the telescope. In this study, we establish solar observation and calibration techniques at 2.6-mm wavelength for the Nobeyama 45-m telescope and derive the absolute solar brightness temperature accurately. We tune the superconductor-insulator-superconductor (SIS) receiver by inducing different bias voltages onto the SIS mixer to prevent saturation. Then, we examine the linearity of the receiver system by comparing outputs derived from different tuning conditions. Further, we measure the lunar filled beam efficiency of the telescope using the New Moon, and then derive the absolute brightness temperature of the Sun. The derived solar brightness temperature is 7700+-310 K at 115 GHz. The telescope beam pattern is modeled as a summation of three Gaussian functions and derived using the solar limb. The real shape of the Sun is determined via deconvolution of the beam pattern from the observed map. Such well-calibrated single-dish observations are important for high-resolution chromospheric studies because they provide the absolute temperature scale missing from interferometer observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا