ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate coherent-elastic neutrino-nucleus scattering ($CE u NS$) in 3-3-1 models for different values of $beta$ in which $beta$ is a parameter used to define the charge operator of the 331 models. We show that the number of events predicted by 331$beta$ model is in agreement with the data given by COHERENT experiment. We evaluate the sensitivity of the mass of Z boson with 90% confidence level (CL) and find that $m_{Z}geq 1.4 $TeV for $beta=-sqrt{3}$ with 90% CL. We perform $chi^2$ fit for liquid Argon, Germanium and NaI detector subsystems, we obtain $m_{Z} geq [2,3.1 ]$ TeV with 90% CL. Our results indicate low-energy high-intensity measurements can provide a valuable probe, complementary to high energy collider searches at LHC and electroweak precision measurements.
We have systematically calculated the mass spectra for S-wave and P-wave fully-charm $cbar{c}cbar{c}$ and fully-bottom $bbar{b}bbar{b}$ tetraquark states in the $mathbf{8}_{[Qbar{Q}]}otimes mathbf{8}_{[Qbar{Q}]}$ color configuration, by using the mom ent QCD sum rule method. The masses for the fully-charm $cbar ccbar c$ tetraquark states are predicted about $6.3-6.5$ GeV for S-wave channels and $7.0-7.2$ GeV for P-wave channels. These results suggest the possibility that there are some $mathbf{8}_{[cbar{c}]}otimes mathbf{8}_{[cbar{c}]}$ components in LHCbs di-$J/psi$ structures. For the fully-bottom $bbar{b}bbar{b}$ system, their masses are calculated around 18.2 GeV for S-wave tetraquark states while 18.4-18.6 GeV for P-wave ones, which are below the $eta_beta_b$ and $Upsilon(1S)Upsilon(1S)$ two-meson decay thresholds.
We review heavy quark flavor and spin symmetries, their exploitation in heavy meson effective theories and the flavored couplings of charmed and light mesons in the definition of their effective Lagrangians. We point out how nonperturbative continuum QCD approaches based on Dyson-Schwinger and Bethe-Salpeter equations can be used to calculate strong and leptonic decays of open-charm mesons and heavy quarkonia. The strong decay $D^*to Dpi$ serves as a benchmark, as it is the only physical open-charm observable that can be related to the effective Lagrangians couplings. Nonetheless, a quantitative comparison of $D^*Dpi$, $rho DD$, $rho D^*D$ and $rho D^* D^*$ couplings for a range of off-shell momenta of the $rho$-meson invalidates SU(4)$_F$ symmetry relations between these couplings. Thus, besides the breaking of flavor symmetry by mass terms in the Lagrangians, the flavor-symmetry breaching in couplings and their dependence on the $rho$-meson virtuality cannot be ignored. We also take the opportunity to present new results for the effective $J/psi DD$ and $J/psi D^*D$ couplings. We conclude this contribution with a discussion on how the description of pseudoscalar and vector $D$, $D_s$, $B$ and $B_s$ meson properties can be drastically improved with a modest modification of the flavor-dependence in the Bethe-Salpeter equation.
The Large Hadron-Electron Collider (LHeC) will operate at $sqrt{s}$ = 1.2 TeV and accumulate about 1/ab of integrated electron-proton luminosity. Novel studies of high energy photon-photon interactions at the LHeC, at the $gammagamma$ center-of-mass energy up to 1 TeV, will open new frontiers in the electroweak physics as well as in searches for physics beyond the Standard Model. Despite a very high $ep$ luminosity, the experimental conditions will be very favorable at the LHeC - a negligible event pileup will allow for unique studies of a number of processes involving the exclusive production via photon-photon fusion.
We show in this work how a sub-100 GeV $Z$ in a $U(1)$ extension of the Standard Model (SM) can emerge through Higgs mediated channels at the Large Hadron Collider (LHC). The light $Z$ has minimal interaction with the SM sector as well as vanishing k inetic mixing with $Z$ boson which allows it to be light and below the SM gauge boson masses. Interestingly such a light $Z$ is very difficult to observe in the standard production modes. We show that it is possible to observe such a gauge boson via scalar mediators that are responsible for the symmetry breaking mechanism of the model. The model also provides a dark matter candidate whose compatibility with the observed relic density is established due to the light $Z$. We also comment on other interesting possibilities such a light $Z$ may present for other observables.
Proton-proton ($pp$) collision has been considered as a baseline to study the system produced in relativistic heavy-ion (AA) collisions with the basic assumption that no thermal medium is formed in $pp$ collisions. This warrants a cautious analysis o f the system produced in $pp$ collisions at relativistic energies.In this work we investigate the charmonium suppression in $pp$ collisions at $sqrt{s} = 7$ and $13$ TeV to inspect the system formed in these collisions. In this work, charmonium suppression has been studied for various event multiplicities and transverse momenta by including the mechanisms of color screening, gluonic dissociation, collisional damping along with the regeneration due to correlated $cbar c$ pairs. Here we obtain a net suppression of charmonia at high-multiplicity events indicating the possibility towards the formation of quark-gluon plasma in $pp$ collisions.
150 - Smbat Grigoryan 2021
A three component model, consisting of the hydrodynamical blast-wave term and two power-law terms, is proposed to fit accurately the hadron spectra measured at midrapidity and for arbitrary transverse momenta ($p_textrm{T}$) in pp and heavy-ion colli sions of different centralities at the LHC. The model describes well the available experimental data for all considered particles from pions to charmonia in pp at $sqrt{s}=$ 2.76, 5.02, 7, 8 and 13 TeV and in Pb-Pb at $sqrt{s_mathrm{NN}}=$ 2.76 and 5.02 TeV.
We perform a new dark matter hot spot analysis using ten years of public IceCube data. In this analysis we assume dark matter self-annihilates to neutrino pairs and treat the production sites as discrete point sources. For neutrino telescopes these s ites will appear as hot spots in the sky, possibly outshining other standard model neutrino sources. Comparing to galactic center analyses, we show that this approach is a powerful tool and capable of setting the highest neutrino detector limits for dark matter masses between 10 TeV and 100 PeV. This is due to the inclusion of spatial information in addition to the typically used energy deposition in the analysis.
We propose a novel method for the elimination of negative Monte Carlo event weights. The method is process-agnostic, independent of any analysis, and preserves all physical observables. We demonstrate the overall performance and systematic improvemen t with increasing event sample size, based on predictions for the production of a W boson with two jets calculated at next-to-leading order perturbation theory.
Weak $B^-rightarrow D^0, pi^0$ and $D^-rightarrow {K}^0, pi^0$ transition form factors are described in both the space- and time-like momentum transfer regions, within a constituent-quark model. Neutrino-meson scattering and semileptonic weak decays are formulated within the point form of relativistic quantum mechanics to end up with relativistic invariant process amplitudes from which meson transition currents and form factors are extracted in an unambiguous way. For space-like momentum transfers, form factors depend on the frame in which the $W M M^prime$ vertex is considered. Such a frame dependence is expected from a pure valence-quark picture, since a complete, frame independent description of form factors is supposed to include non-valence contributions. The most important of such contributions are the $Z$-graphs, which are, however, suppressed in the infinite-momentum frame ($q^2<0$). On the other hand, they can play a significant role in the Breit frame ($q^2<0$) and in the direct decay calculation ($q^2>0$), as a comparison with the infinite-momentum-frame form factors (analytically continued to $q^2>0$) reveals. Numerical results for the analytically continued infinite-momentum-frame form factors agree very well with lattice data in the time-like momentum transfer region and the experimental value for the slope of the $F^+_{Brightarrow D}$ transition form factor at zero recoil is reproduced satisfactorily. These predictions satisfy heavy-quark-symmetry constraints and their $q^2$ dependence is well approximated by a pole fit, reminiscent of a vector-meson-dominance-like decay mechanism. We discuss how such a decay mechanism can be accommodated within an extension of our constituent-quark model, by allowing for a non-valence component in the meson wave functions. We also address the question of wrong cluster properties inherent in the Bakamjian-Thomas formulation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا