ترغب بنشر مسار تعليمي؟ اضغط هنا

We study static, spherically symmetric vacuum solutions to Quadratic Gravity, extending considerably our previous Rapid Communication [Phys. Rev. D 98, 021502(R) (2018)] on this topic. Using a conformal-to-Kundt metric ansatz, we arrive at a much sim pler form of the field equations in comparison with their expression in the standard spherically symmetric coordinates. We present details of the derivation of this compact form of two ordinary differential field equations for two metric functions. Next, we apply analytical methods and express their solutions as infinite power series expansions. We systematically derive all possible cases admitted by such an ansatz, arriving at six main classes of solutions, and provide recurrent formulas for all the series coefficients. These results allow us to identify the classes containing the Schwarzschild black hole as a special case. It turns out that one class contains only the Schwarzschild black hole, three classes admit the Schwarzschild solution as a special subcase, and two classes are not compatible with the Schwarzschild solution at all since they have strictly nonzero Bach tensor. In our analysis, we naturally focus on the classes containing the Schwarzschild spacetime, in particular on a new family of the Schwarzschild-Bach black holes which possesses one additional non-Schwarzschild parameter corresponding to the value of the Bach tensor invariant on the horizon. We study its geometrical and physical properties, such as basic thermodynamical quantities and tidal effects on free test particles induced by the presence of the Bach tensor. We also compare our results with previous findings in the literature obtained using the standard spherically symmetric coordinates.
In our previous paper [Phys. Rev. D 89 (2014) 124029], cited as [1], we attempted to find Robinson-Trautman-type solutions of Einsteins equations representing gyratonic sources (matter field in the form of an aligned null fluid, or particles propagat ing with the speed of light, with an additional internal spin). Unfortunately, by making a mistake in our calculations, we came to the wrong conclusion that such solutions do not exist. We are now correcting this mistake. In fact, this allows us to explicitly find a new large family of gyratonic solutions in the Robinson-Trautman class of spacetimes in any dimension greater than (or equal to) three. Gyratons thus exist in all twist-free and shear-free geometries, that is both in the expanding Robinson-Trautman and in the non-expanding Kundt classes of spacetimes. We derive, summarize and compare explicit canonical metrics for all such spacetimes in arbitrary dimension.
Under a weak assumption of the existence of a geodesic null congruence, we present the general solution of the Einstein field equations in three dimensions with any value of the cosmological constant, admitting an aligned null matter field, and also gyratons (a matter field in the form of a null dust with an additional internal spin). The general local solution consists of the expanding Robinson-Trautman class and the non-expanding Kundt class. The gyratonic solutions reduce to spacetimes with a pure radiation matter field when the spin is set to zero. Without matter fields, we obtain new forms of the maximally symmetric vacuum solutions. We discuss these complete classes of solutions and their various subclasses. In particular, we identify the gravitational field of an arbitrarily accelerating source (the Kinnersley photon rocket, which reduces to a Vaidya-type non-moving object) in the Robinson-Trautman class, and pp-waves, vanishing scalar invariants (VSI) spacetimes, and constant scalar invariants (CSI) spacetimes in the Kundt class.
We present, in an explicit form, the metric for all spherically symmetric Schwarzschild-Bach black holes in Einstein-Weyl theory. In addition to the black hole mass, this complete family of spacetimes involves a parameter that encodes the value of th e Bach tensor on the horizon. When this additional non-Schwarzschild parameter is set to zero the Bach tensor vanishes everywhere and the Schwa-Bach solution reduces to the standard Schwarzschild metric of general relativity. Compared with previous studies, which were mainly based on numerical integration of a complicated form of field equations, the new form of the metric enables us to easily investigate geometrical and physical properties of these black holes, such as specific tidal effects on test particles, caused by the presence of the Bach tensor, as well as fundamental thermodynamical quantities.
Critical gravity is a quadratic curvature gravity in four dimensions which is ghost-free around the AdS background. Constructing a Vaidya-type exact solution, we show that the area of a black hole defined by a future outer trapping horizon can shrink by injecting a charged null fluid with positive energy density, so that a black hole is no more a one-way membrane even under the null energy condition. In addition, the solution shows that the Wald-Kodama dynamical entropy of a black hole is negative and can decrease. These properties expose the pathological aspects of critical gravity at the non-perturbative level.
We generalize the classical junction conditions for constructing impulsive gravitational waves by the Penrose cut and paste method. Specifically, we study nonexpanding impulses which propagate in spaces of constant curvature with any value of the cos mological constant (that is Minkowski, de Sitter, or anti-de Sitter universes) when additional off-diagonal metric components are present. Such components encode a possible angular momentum of the ultra-relativistic source of the impulsive wave - the so called gyraton. We explicitly derive and analyze a specific transformation that relates the distributional form of the metric to a new form which is (Lipschitz) continuous. Such a transformation automatically implies an extended version of the Penrose junction conditions. It turns out that the conditions for identifying points of the background spacetime across the impulse are the same as in the original Penrose cut and paste construction, but their derivatives now directly represent the influence of the gyraton on the axial motion of test particles. Our results apply both for vacuum and nonvacuum solutions of Einsteins field equations, and can also be extended to other theories of gravity.
We investigate a class of gravitational pp-waves which represent the exterior vacuum field of spinning particles moving with the speed of light. Such exact spacetimes are described by the original Brinkmann form of the pp-wave metric including the of ten neglected off-diagonal terms. We put emphasis on a clear physical and geometrical interpretation of these off-diagonal metric components. We explicitly analyze several new properties of these spacetimes associated with the spinning character of the source, such as rotational dragging of frames, geodesic deviation, impulsive limits and the corresponding behavior of geodesics.
We consider the geodesic equation in impulsive pp-wave space-times in Rosen form, where the metric is of Lipschitz regularity. We prove that the geodesics (in the sense of Caratheodory) are actually continuously differentiable, thereby rigorously jus tifying the $C^1$-matching procedure which has been used in the literature to explicitly derive the geodesics in space-times of this form.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا