ترغب بنشر مسار تعليمي؟ اضغط هنا

The $mathbf{O}(D,D)$ covariant generalized metric, postulated as a truly fundamental variable, can describe novel geometries where the notion of Riemannian metric ceases to exist. Here we quantize a closed string upon such backgrounds and identify fl at, anomaly-free, non-Riemannian string vacua in the familiar critical dimension, $D{=26}$ (or $D{=10}$). Remarkably, the whole BRST closed string spectrum is restricted to just one level with no tachyon, and matches the linearized equations of motion of Double Field Theory. Taken as an internal space, our non-Riemannian vacua may open up novel avenues alternative to traditional string compactification.
Taking $mathbf{O}(D,D)$ covariant field variables as its truly fundamental constituents, Double Field Theory can accommodate not only conventional supergravity but also non-Riemannian gravities that may be classified by two non-negative integers, $(n ,bar{n})$. Such non-Riemannian backgrounds render a propagating string chiral and anti-chiral over $n$ and $bar{n}$ dimensions respectively. Examples include, but are not limited to, Newton--Cartan, Carroll, or Gomis--Ooguri. Here we analyze the variational principle with care for a generic $(n,bar{n})$ non-Riemannian sector. We recognize a nontrivial subtlety for ${nbar{n} eq 0}$ that infinitesimal variations generically include those which change $(n,bar{n})$. This seems to suggest that the various non-Riemannian gravities should better be identified as different solution sectors of Double Field Theory rather than viewed as independent theories. Separate verification of our results as string worldsheet beta-functions may enlarge the scope of the string landscape far beyond Riemann.
431 - Jeong-Hyuck Park 2019
Upon treating the whole closed-string massless NS-NS sector as stringy graviton fields, Double Field Theory may evolve into `Stringy Gravity. In terms of an $mathbf{O}(D,D)$ covariant differential geometry beyond Riemann, we present the definitions o f the off-shell conserved stringy Einstein curvature tensor and the on-shell conserved stringy Energy-Momentum tensor. Equating them, all the equations of motion of the massless sector are unified into a single expression, $G_{AB}{=8pi G} T_{AB}$, carrying $mathbf{O}(D,D)$ vector indices, which we dub `the Einstein Double Field Equations.
64 - Jeong-Hyuck Park 2017
Dictated by Symmetry Principle, string theory predicts not General Relativity but its own gravity which assumes the entire closed string massless sector to be geometric and thus gravitational. In terms of $R/(MG)$, i.e. the dimensionless radial varia ble normalized by mass, Stringy Gravity agrees with General Relativity toward infinity, but modifies it at short distance. At far short distance, gravitational force can be even repulsive. These may solve the dark matter and energy problems, as they arise essentially from small $R/(MG)$ observations: long distance divided by much heavier mass. We address the pertinent differential geometry for Stringy Gravity, stringy Equivalence Principle, stringy geodesics and the minimal coupling to the Standard Model. We highlight the notion of `doubled-yet-gauged coordinate system, in which a gauge orbit corresponds to a single physical point and proper distance is defined between two gauge orbits by a path integral.
Finite systems may undergo first or second order phase transitions under not isovolumetric but isobaric condition. The `analyticity of a finite-system partition function has been argued to imply universal values for isobaric critical exponents, $alph a_{{scriptscriptstyle{P}}}$, $beta_{{scriptscriptstyle{P}}}$ and $gamma_{{scriptscriptstyle{P}}}$. Here we test this prediction by analyzing NIST REFPROP data for twenty major molecules, including $mathrm{H_{2}O, CO_{2}, O_{2}}$, etc. We report they are consistent with the prediction for temperature range, $10^{-5} <|T/T_{c}-1|<10^{-3}$. For each molecule, there appears to exist a characteristic natural number, $n=2,3,4,5,6$, which determines all the critical exponents for $T<T_{c}$ as $alpha_{{scriptscriptstyle{P}}}=gamma_{{scriptscriptstyle{P}}}=frac{n}{n+1}$ and $beta_{{scriptscriptstyle{P}}}=delta^{-1}=frac{1}{n+1}$. For the opposite $T>T_{c}$, all the fluids seem to indicate the universal value of ${n=2}$.
65 - Jeong-Hyuck Park 2016
We construct a world-sheet action for Green-Schwarz superstring in terms of doubled-yet-gauged spacetime coordinates. For an arbitrarily curved NS-NS background, the action possesses $mathbf{O}(10,10)$ T-duality, $mathbf{Spin}(1,9)timesmathbf{Spin}(9 ,1)$ Lorentz symmetry, coordinate gauge symmetry, spacetime doubled-yet-gauged diffeomorphisms, world-sheet diffeomorphisms and Weyl symmetry. Further, restricted to flat backgrounds, it enjoys maximal spacetime supersymmetry and kappa-symmetry. After the auxiliary coordinate gauge symmetry potential being integrated out, our action can consistently reduce to the original undoubled Green-Schwarz action. Thanks to the twofold spin groups, the action is unique: it is specific choices of the NS-NS backgrounds that distinguish IIA or IIB, as well as lead to non-Riemannian or non-relativistic superstring a la Gomis-Ooguri which might deserve the nomenclature, type IIC.
We construct a double field theory coupled to the fields present in Vasilievs equations. Employing the semi-covariant differential geometry, we spell a functional in which each term is completely covariant with respect to $mathbf{O}(4,4)$ T-duality, doubled diffeomorphisms, $mathbf{Spin}(1,3)$ local Lorentz symmetry and, separately, $mathbf{HS}(4)$ higher spin gauge symmetry. We identify a minimal set of BPS-like conditions whose solutions automatically satisfy the full Euler-Lagrange equations. As such a solution, we derive a linear dilaton vacuum. With extra algebraic constraints further supplemented, the BPS-like conditions reduce to the bosonic Vasiliev equations.
To the full order in fermions, we construct D=10 type II supersymmetric double field theory. We spell the precise N=2 supersymmetry transformation rules as for 32 supercharges. The constructed action unifies type IIA and IIB supergravities in a manif estly covariant manner with respect to O(10,10) T-duality and a pair of local Lorentz groups, or Spin(1,9) times Spin(9,1), besides the usual general covariance of supergravities or the generalized diffeomorphism. While the theory is unique, the solutions are twofold. Type IIA and IIB supergravities are identified as two different types of solutions rather than two different theories.
In the name of supersymmetric double field theory, superstring effective actions can be reformulated into simple forms. They feature a pair of vielbeins corresponding to the same spacetime metric, and hence enjoy double local Lorentz symmetries. In a manifestly covariant manner --with regard to O(D,D) T-duality, diffeomorphism, B-field gauge symmetry and the pair of local Lorentz symmetries-- we incorporate R-R potentials into double field theory. We take them as a single object which is in a bi-fundamental spinorial representation of the double Lorentz groups. We identify cohomological structure relevant to the field strength. A priori, the R-R sector as well as all the fermions are O(D,D) singlet. Yet, gauge fixing the two vielbeins equal to each other modifies the O(D,D) transformation rule to call for a compensating local Lorentz rotation, such that the R-R potential may turn into an O(D,D) spinor and T-duality can flip the chirality exchanging type IIA and IIB supergravities.
We develop superspace techniques to construct general off-shell N=1,2,3,4 superconformal sigma-models in three space-time dimensions. The most general N=3 and N=4 superconformal sigma-models are constructed in terms of N=2 chiral superfields. Several superspace proofs of the folklore statement that N=3 supersymmetry implies N=4 are presented both in the on-shell and off-shell settings. We also elaborate on (super)twistor realisations for (super)manifolds on which the three-dimensional N-extended superconformal groups act transitively and which include Minkowski space as a subspace.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا