ترغب بنشر مسار تعليمي؟ اضغط هنا

The electronic structure and the phases of BaVS3

63   0   0.0 ( 0 )
 نشر من قبل Gyorgy Mihaly
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

BaVS3 is a moderately correlated d-electron system with a rich phase diagram. To construct the corresponding minimal electronic model, one has to decide which d-states are occupied, and to which extent. The ARPES experiment presented here shows that the behavior of BaVS3 is governed by the coexistence of wide-band (A_1g) and narrow-band (twofold degenerate E) d-electrons. We sketch a lattice fermion model which may serve as a minimal model of BaVS3. This serves foremost for the understanding of the metal-insulator in pure BaVS3 and its absence in some related compounds. The nature of the low temperature magnetic order differs for several systems which may be described in terms of the same electron model. We describe several recent experiments which give information about magnetic order at high pressures. In particular, we discuss field-induced insulator-to-metal transition at slightly subcritical pressures, and an evidence for magnetic order in the high-pressure metallic phase. The phase diagram of Sr-doped BaVS3 is also discussed. The complexity of the phases of BaVS3 arises from the fact that it is simultaneously unstable against several kinds of instabilities.



قيم البحث

اقرأ أيضاً

We analyze the effect of twists on the electronic structure of configurations of infinite stacks of graphene layers. We focus on three different cases: an infinite stack where each layer is rotated with respect to the previous one by a fixed angle, t wo pieces of semi-infinite graphite rotated with respect to each other, and finally a single layer of graphene rotated with respect to a graphite surface. In all three cases we find a rich structure, with sharp resonances and flat bands for small twist angles. The method used can be easily generalized to more complex arrangements and stacking sequences.
The electronic structure of some europium chalcogenides and pnictides is calculated using the {it ab-initio} self-interaction corrected local-spin-density approximation (SIC-LSD). This approach allows both a localised description of the rare earth $f -$electrons and an itinerant description of $s$, $p$ and $d$-electrons. Localising different numbers of $f$-electrons on the rare earth atom corresponds to different nominal valencies, and the total energies can be compared, providing a first-principles description of valency. All the chalcogenides are found to be insulators in the ferromagnetic state and to have a divalent configuration. For the pnictides we find that EuN is half-metallic and the rest are normal metals. However a valence change occurs as we go down the pnictide column of the Periodic Table. EuN and EuP are trivalent, EuAs is only just trivalent and EuSb is found to be divalent. Our results suggest that these materials may find application in spintronic and spin filtering devices.
68 - H. Suderow 1997
We present new measurements of the thermal conductivity of UPt3 down to very low temperatures (16mK) and under magnetic fields (up to 4 T) which cover all the superconducting phases of UPt3. The measurements in zero field are compared with recent the oretical predictions for the thermal conductivity, which is dominated by impurity states at the lowest temperatures studied. The measurements under magnetic field at low temperatures are surprising since they dont show the expected low field square root dependence. The discontinuity of d kappa/dT at Tc changes drastically when passing from the high field low temperature C phase to the low field high temperature A phase : this is related to the change of the symmetry of the superconducting order parameter when crossing the A - C phase transition.
152 - T. Jeong , W. E. Pickett 2004
Due to increased interest in the unusual magnetic and transport behavior of MnSi and its possible relation to its crystal structure (B20) which has unusual coordination and lacks inversion symmetry, we provide a detailed analysis of the electronic an d magnetic structure of MnSi. The non-symmorphic P2_13 spacegroup leads to unusual fourfold degenerate states at the zone corner R point, as well as ``sticking of pairs of bands throughout the entire Brillouin zone surface. The resulting Fermi surface acquires unusual features as a result of the band sticking. For the ferromagnetic system (neglecting the long wavelength spin spiral) with the observed moment of 0.4 mu_B/Mn, one of the fourfold levels at R in the minority bands falls at the Fermi energy (E_F), and a threefold majority level at k=0 also falls at E_F. The band sticking and presence of bands with vanishing velocity at E_F imply an unusually large phase space for long wavelength, low energy interband transitions that will be important for understanding the unusual resistivity and far infrared optical behavior.
79 - J. F. Zhao , H. W. Ou , G. Wu 2006
The electronic structure of a new charge-density-wave/ superconductor system, 1T-CuxTiSe2, has been studied by photoemission spectroscopy. A correlated semiconductor band structure is revealed for the undoped case. With Cu doping, the charge density wave is suppressed by the raising of the chemical potential, while the superconductivity is enhanced by the enhancement of the density of states. Moreover, the strong scattering at high doping might be responsible for the suppression of superconductivity in that regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا