ﻻ يوجد ملخص باللغة العربية
The generation of surface plasmon polaritons (SPPs) at isolated nanoholes in 100 nm thick Au films is studied using near-field scanning optical microscopy (NSOM). Finite-difference time-domain calculations, some explicitly including a model of the NSOM tip, are used to interpret the results. We find the holes act as point-like sources of SPPs and demonstrate that interference between SPPs and a directly transmitted wave allows for determination of the wavelength, phase, and decay length of the SPP. The near-field intensity patterns can be manipulated by varying the angle and polarization of the incident beam.
Thanks to Victor Veselago for his hypothesis of negative index of refraction, metamaterials -- engineered composites -- can be designed to have properties difficult or impossible to find in nature: they can have both electrical permitivity ($epsilon$
Plasmons --the collective oscillations of electrons in conducting materials-- play a pivotal role in nanophotonics because of their ability to couple electronic and photonic degrees of freedom. In particular, plasmons in graphene --the atomically thi
We report the molecular beam epitaxial growth, structure, and electronic measurements of single-crystalline LaAuSb films on Al$_2$O$_3$ (0001) substrates. LaAuSb belongs to a broad family of hexagonal $ABC$ intermetallics in which the magnitude and s
We analyze the evolution of the normal and superconducting electronic properties in epitaxial TiN films, characterized by high Ioffe-Regel parameter values, as a function of the film thickness. As the film thickness decreases, we observe an increase
We report on a theoretical study of collective electronic excitations in single-layer antimony crystals (antimonene), a novel two-dimensional semiconductor with strong spin-orbit coupling. Based on a tight-binding model, we consider electron-doped an