ﻻ يوجد ملخص باللغة العربية
We propose a theoretical scheme to realize two-parameter estimation via a Bose-Einstein condensates confined in a symmetric triple-well. The three-mode NOON state is prepared adiabatically as the initial state. Two phase differences between the wells are two parameters to be estimated. With the help of classical and quantum Fisher information, we study the sensitivity of the triple-well on estimating two phase parameters simultaneously. The result shows that the precision of simultaneous estimation of two parameters in a triple-well system can reach the Heisenberg scaling.
The quantum illumination is examined by making use of the three-mode maximally entangled Gaussian state, which involves one signal and two idler beams. It is shown that the quantum Bhattacharyya bound between $rho$ (state for target absence) and $sig
We propose an optimization scheme for ground-state cooling of a mechanical mode by coupling to a general three-level system. We formulate the optimization scheme, using the master equation approach, over a broad range of system parameters including d
Quantum state smoothing is a technique to estimate an unknown true state of an open quantum system based on partial measurement information both prior and posterior to the time of interest. In this paper, we show that the smoothed quantum state is an
Multipartite entanglement is a key resource for various quantum information tasks. Here, we present a scheme for generating genuine tripartite entanglement via nonlinear optical processes. We derive, in the Fock basis, the corresponding output state
We propose to create optical nonreciprocity in a three-mode optomechanical system comprising one mechanical and two optical modes, where the mechanical mode is coupled with only one of the optical modes. The optical nonreciprocal response of the syst