In this paper, we study the effects of rainbow gravity on relativistic Bose-Einstein condensation and thermodynamics parameters. We initially discussed some formal aspects of the model to only then compute the corrections to the Bose-Einstein condensation. The calculations were carried out by computing the generating functional, from which we extract the thermodynamics parameters. The corrected critical temperature $T_c$ that sets the Bose-Einstein Condensation was also computed for the three mostly adopted cases for the rainbow functions. We have also obtained a phenomenological upper bound for a combination of the quantities involved in the model, besides showing the possibility of occurrence of the Bose-Einstein condensation in two spatial dimensions under appropriate conditions on those functions. Finally, we have discussed how harder is for the particles at an arbitrary temperature $T<T_c$ to enter the condensed state when compared with the usual scenario.