ﻻ يوجد ملخص باللغة العربية
In this paper, we study the effects of rainbow gravity on relativistic Bose-Einstein condensation and thermodynamics parameters. We initially discussed some formal aspects of the model to only then compute the corrections to the Bose-Einstein condensation. The calculations were carried out by computing the generating functional, from which we extract the thermodynamics parameters. The corrected critical temperature $T_c$ that sets the Bose-Einstein Condensation was also computed for the three mostly adopted cases for the rainbow functions. We have also obtained a phenomenological upper bound for a combination of the quantities involved in the model, besides showing the possibility of occurrence of the Bose-Einstein condensation in two spatial dimensions under appropriate conditions on those functions. Finally, we have discussed how harder is for the particles at an arbitrary temperature $T<T_c$ to enter the condensed state when compared with the usual scenario.
In this work, we consider that in energy scales greater than the Planck energy, the geometry, fundamental physical constants, as charge, mass, speed of light and Newtonian constant of gravitation, and matter fields will depend on the scale. This type
We show that Liouville gravity arises as the limit of pure Einstein gravity in 2+epsilon dimensions as epsilon goes to zero, provided Newtons constant scales with epsilon. Our procedure - spherical reduction, dualization, limit, dualizing back - pass
We investigate the connection between Gravitys Rainbow and Horava-Lifshitz gravity, since both theories incorporate a modification in the UltraViolet regime which improves their quantum behavior at the cost of the Lorentz invariance loss. In particul
In this paper we analyze the energy levels of a charged scalar particle placed in the static cosmic string spacetime, under the action of a uniform magnetic field parallel to the string, in the context of the semi-classical approach of the rainbow gr
It was recently shown that gravitons with a very small mass should have formed a Bose-Einstein condensate in the very early Universe, whose density and quantum potential can account for the dark matter and dark energy in the Universe respectively. He