ترغب بنشر مسار تعليمي؟ اضغط هنا

Homogeneous Anisotropic Cosmological Models with Viscous Fluid and Magnetic Field

86   0   0.0 ( 0 )
 نشر من قبل Abhik Kumar Sanyal Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The paper presents some exact solutions of Bianchi types I, III and Kantowski-Sachs cosmological models consisting of a dissipative fluid along with an axial magnetic field. A barytropic equation of state between the thermodynamic pressure and the matter density, together with a pair of linear relations between the matter density, the shear scalar, and the expansion scalar have been assumed for simplicity. The solutions are basically of two different types, one for the Bianchi-I and the other for Bianchi-III and Kantowski-Sachs type. The presence of the magnetic field, however, does not change the fundamental nature of the initial singularity.



قيم البحث

اقرأ أيضاً

A spatially homogeneous and locally rotationally symmetric Bianchi type-II cosmological model under the influence of both shear and bulk viscosity has been studied. Exact solutions are obtained with a barotropic equation of state between thermodynami cs pressure and the energy density of the fluid, and considering the linear relationships amongst the energy density, the expansion scalar and the shear scalar. Special cases with vanishing bulk viscosity coefficients and with the perfect fluid in the absence of viscosity have also been studied. The formal appearance of the solutions is the same for both the viscous as well as the perfect fluids. The difference is only in choosing a constant parameter which appears in the solutions. In the cases of either a fluid with bulk viscosity alone or a perfect fluid, the barotropic equation of state is no longer an additional assumption to be imposed; rather it follows directly from the field equations.
In this paper, aniostropic dark energy cosmological models have been constructed in a Bianchi-V space-time with the energy momentum tensor consisting of two non-interacting fluids namely bulk viscous fluid and dark energy fluid. Two different models are constructed based on the power law cosmology and de Sitter universe. The constructed model also embedded with different pressure gradients along different spatial directions. The variable equation of state (EoS) parameter, skewness parameters for both the models are obtained and analyzed. The physical properties of the models obtained with the use of scale factors of power law and de Sitter law are also presented.
150 - Paul Tod 2007
We prove well-posedness of the initial value problem for the Einstein equations for spatially-homogeneous cosmologies with data at an isotropic cosmological singularity, for which the matter content is either a cosmological constant with collisionles s particles of a single mass (possibly zero) or a cosmological constant with a perfect fluid having the radiation equation of state. In both cases, with a positive cosmological constant, these solutions, except possibly for Bianchi-type-IX, will expand forever, and be geodesically-complete into the future.
The standard formulation of general relativity fails to describe some recent interests in the universe. It impels us to go beyond the standard formulation of gravity. The $f(Q)$ gravity theory is an interesting modified theory of gravity, where the g ravitational interaction is driven by the nonmetricity $Q$. This study aims to examine the cosmological models with the presence of bulk viscosity effect in the cosmological fluid within the framework of $f(Q)$ gravity. We construct three bulk viscous fluid models, i.e. (i) for the first model, we assuming the Lagrangian $f(Q)$ as linear dependence on $Q$, (ii) for the second model the Lagrangian $f(Q)$ as a polynomial functional form, and (iii) the Lagrangian $f(Q)$ as a logarithmic dependence on $Q$. Furthermore, we use 57 points of Hubble data and 1048 Pantheon dataset to constraint the model parameters. Then, we discuss all the energy conditions for each model, which helps us to test the self-consistency of our models. Finally, we present the profiles of the equation of state parameters to test the models present status.
The generalized Chaplygin gas, which interpolates between a high density relativistic era and a non-relativistic matter phase, is a popular dark energy candidate. We consider a generalization of the Chaplygin gas model, by assuming the presence of a bulk viscous type dissipative term in the effective thermodynamic pressure of the gas. The dissipative effects are described by using the truncated Israel-Stewart model, with the bulk viscosity coefficient and the relaxation time functions of the energy density only. The corresponding cosmological dynamics of the bulk viscous Chaplygin gas dominated universe is considered in detail for a flat homogeneous isotropic Friedmann-Robertson-Walker geometry. For different values of the model parameters we consider the evolution of the cosmological parameters (scale factor, energy density, Hubble function, deceleration parameter and luminosity distance, respectively), by using both analytical and numerical methods. In the large time limit the model describes an accelerating universe, with the effective negative pressure induced by the Chaplygin gas and the bulk viscous pressure driving the acceleration. The theoretical predictions of the luminosity distance of our model are compared with the observations of the type Ia supernovae. The model fits well the recent supernova data. From the fitting we determine both the equation of state of the Chaplygin gas, and the parameters characterizing the bulk viscosity. The evolution of the scalar field associated to the viscous Chaplygin fluid is also considered, and the corresponding potential is obtained. Hence the viscous Chaplygin gas model offers an effective dynamical possibility for replacing the cosmological constant, and to explain the recent acceleration of the universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا