ﻻ يوجد ملخص باللغة العربية
This paper applies machine learning to optimize the transmission policy of cognitive radio inspired non-orthogonal multiple access (CR-NOMA) networks, where time-division multiple access (TDMA) is used to serve multiple primary users and an energy-constrained secondary user is admitted to the primary users time slots via NOMA. During each time slot, the secondary user performs the two tasks: data transmission and energy harvesting based on the signals received from the primary users. The goal of the paper is to maximize the secondary users long-term throughput, by optimizing its transmit power and the time-sharing coefficient for its two tasks. The long-term throughput maximization problem is challenging due to the need for making decisions that yield long-term gains but might result in short-term losses. For example, when in a given time slot, a primary user with large channel gains transmits, intuition suggests that the secondary user should not carry out data transmission due to the strong interference from the primary user but perform energy harvesting only, which results in zero data rate for this time slot but yields potential long-term benefits. In this paper, a deep reinforcement learning (DRL) approach is applied to emulate this intuition, where the deep deterministic policy gradient (DDPG) algorithm is employed together with convex optimization. Our simulation results demonstrate that the proposed DRL assisted NOMA transmission scheme can yield significant performance gains over two benchmark schemes.
This lecture presents a concise review of the current status of hard QCD and electromagnetic processes as probes of the quark-gluon plasma.
Multi-access edge computing (MEC) and non-orthogonal multiple access (NOMA) have been regarded as promising technologies to improve computation capability and offloading efficiency of the mobile devices in the sixth generation (6G) mobile system. Thi
Non-orthogonal multiple access (NOMA) has attracted much recent attention owing to its capability for improving the system spectral efficiency in wireless communications. Deploying NOMA in heterogeneous network can satisfy users explosive data traffi
In this paper, we exploit the capability of multi-agent deep reinforcement learning (MA-DRL) technique to generate a transmit power pool (PP) for Internet of things (IoT) networks with semi-grant-free non-orthogonal multiple access (SGF-NOMA). The PP
In this paper, we investigate a non-orthogonal multiple access (NOMA) based mobile edge computing (MEC) network, in which two users may partially offload their respective tasks to a single MEC server through uplink NOMA. We propose a new offloading s