ترغب بنشر مسار تعليمي؟ اضغط هنا

No-Pain No-Gain: DRL Assisted Optimization in Energy-Constrained CR-NOMA Networks

93   0   0.0 ( 0 )
 نشر من قبل Zhiguo Ding
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper applies machine learning to optimize the transmission policy of cognitive radio inspired non-orthogonal multiple access (CR-NOMA) networks, where time-division multiple access (TDMA) is used to serve multiple primary users and an energy-constrained secondary user is admitted to the primary users time slots via NOMA. During each time slot, the secondary user performs the two tasks: data transmission and energy harvesting based on the signals received from the primary users. The goal of the paper is to maximize the secondary users long-term throughput, by optimizing its transmit power and the time-sharing coefficient for its two tasks. The long-term throughput maximization problem is challenging due to the need for making decisions that yield long-term gains but might result in short-term losses. For example, when in a given time slot, a primary user with large channel gains transmits, intuition suggests that the secondary user should not carry out data transmission due to the strong interference from the primary user but perform energy harvesting only, which results in zero data rate for this time slot but yields potential long-term benefits. In this paper, a deep reinforcement learning (DRL) approach is applied to emulate this intuition, where the deep deterministic policy gradient (DDPG) algorithm is employed together with convex optimization. Our simulation results demonstrate that the proposed DRL assisted NOMA transmission scheme can yield significant performance gains over two benchmark schemes.



قيم البحث

اقرأ أيضاً

96 - Berndt Muller 2012
This lecture presents a concise review of the current status of hard QCD and electromagnetic processes as probes of the quark-gluon plasma.
Multi-access edge computing (MEC) and non-orthogonal multiple access (NOMA) have been regarded as promising technologies to improve computation capability and offloading efficiency of the mobile devices in the sixth generation (6G) mobile system. Thi s paper mainly focuses on the hybrid NOMA-MEC system, where multiple users are first grouped into pairs, and users in each pair offload their tasks simultaneously by NOMA, and then a dedicated time duration is scheduled to the more delay-tolerable user for uploading the remaining data by orthogonal multiple access (OMA). For the conventional NOMA uplink transmission, successive interference cancellation (SIC) is applied to decode the superposed signals successively according to the channel state information (CSI) or the quality of service (QoS) requirement. In this work, we integrate the hybrid SIC scheme which dynamically adapts the SIC decoding order among all NOMA groups. To solve the user grouping problem, a deep reinforcement learning (DRL) based algorithm is proposed to obtain a close-to-optimal user grouping policy. Moreover, we optimally minimize the offloading energy consumption by obtaining the closed-form solution to the resource allocation problem. Simulation results show that the proposed algorithm converges fast, and the NOMA-MEC scheme outperforms the existing orthogonal multiple access (OMA) scheme.
Non-orthogonal multiple access (NOMA) has attracted much recent attention owing to its capability for improving the system spectral efficiency in wireless communications. Deploying NOMA in heterogeneous network can satisfy users explosive data traffi c requirements, and NOMA will likely play an important role in the fifth-generation (5G) mobile communication networks. However, NOMA brings new technical challenges on resource allocation due to the mutual cross-tier interference in heterogeneous networks. In this article, to study the tradeoff between data rate performance and energy consumption in NOMA, we examine the problem of energy-efficient user scheduling and power optimization in 5G NOMA heterogeneous networks. The energy-efficient user scheduling and power allocation schemes are introduced for the downlink 5G NOMA heterogeneous network for perfect and imperfect channel state information (CSI) respectively. Simulation results show that the resource allocation schemes can significantly increase the energy efficiency of 5G NOMA heterogeneous network for both cases of perfect CSI and imperfect CSI.
In this paper, we exploit the capability of multi-agent deep reinforcement learning (MA-DRL) technique to generate a transmit power pool (PP) for Internet of things (IoT) networks with semi-grant-free non-orthogonal multiple access (SGF-NOMA). The PP is mapped with each resource block (RB) to achieve distributed transmit power control (DPC). We first formulate the resource (sub-channel and transmit power) selection problem as stochastic Markov game, and then solve it using two competitive MA-DRL algorithms, namely double deep Q network (DDQN) and Dueling DDQN. Each GF user as an agent tries to find out the optimal transmit power level and RB to form the desired PP. With the aid of dueling processes, the learning process can be enhanced by evaluating the valuable state without considering the effect of each action at each state. Therefore, DDQN is designed for communication scenarios with a small-size action-state space, while Dueling DDQN is for a large-size case. Our results show that the proposed MA-Dueling DDQN based SGF-NOMA with DPC outperforms the SGF-NOMA system with the fixed-power-control mechanism and networks with pure GF protocols with 17.5% and 22.2% gain in terms of the system throughput, respectively. Moreover, to decrease the training time, we eliminate invalid actions (high transmit power levels) to reduce the action space. We show that our proposed algorithm is computationally scalable to massive IoT networks. Finally, to control the interference and guarantee the quality-of-service requirements of grant-based users, we find the optimal number of GF users for each sub-channel.
In this paper, we investigate a non-orthogonal multiple access (NOMA) based mobile edge computing (MEC) network, in which two users may partially offload their respective tasks to a single MEC server through uplink NOMA. We propose a new offloading s cheme that can operate in three different modes, namely the partial computation offloading, the complete local computation, and the complete offloading. We further derive a closed-form expression of the successful computation probability for the proposed scheme. As part of the proposed offloading scheme, we formulate a problem to maximize the successful computation probability by jointly optimizing the time for offloading, the power allocation of the two users and the offloading ratios which decide how many tasks should be offloaded to the MEC server. We obtain the optimal solutions in the closed forms. Simulation results show that our proposed scheme can achieve the highest successful computation probability than the existing schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا