ﻻ يوجد ملخص باللغة العربية
Due to the constant increase and versatility of IoT devices that should keep sensitive information private, Side-Channel Analysis (SCA) attacks on embedded devices are gaining visibility in the industrial field. The integration and validation of countermeasures against SCA can be an expensive and cumbersome process, especially for the less experienced ones, and current certification procedures require to attack the devices under test using multiple SCA techniques and attack vectors, often implying a high degree of complexity. The goal of this paper is to ease one of the most crucial and tedious steps of profiling attacks i.e. the points of interest (POI) selection and hence assist the SCA evaluation process. To this end, we introduce the usage of Estimation of Distribution Algorithms (EDAs) in the SCA field in order to automatically tune the point of interest selection. We showcase our approach on several experimental use cases, including attacks on unprotected and protected AES implementations over distinct copies of the same device, dismissing in this way the portability issue.
Data deduplication is able to effectively identify and eliminate redundant data and only maintain a single copy of files and chunks. Hence, it is widely used in cloud storage systems to save storage space and network bandwidth. However, the occurrenc
Internet of Things (IoT) devices have expanded the horizon of digital forensic investigations by providing a rich set of new evidence sources. IoT devices includes health implants, sports wearables, smart burglary alarms, smart thermostats, smart ele
Background and Objectives: Substitution-box (s-box) is one of the essential components to create confusion and nonlinear properties in cryptography. To strengthening a cipher against various attacks, including side channel attacks, these boxes need t
Observational models make tractable the analysis of information flow properties by providing an abstraction of side channels. We introduce a methodology and a tool, Scam-V, to validate observational models for modern computer architectures. We combin
Todays mobile devices contain densely packaged system-on-chips (SoCs) with multi-core, high-frequency CPUs and complex pipelines. In parallel, sophisticated SoC-assisted security mechanisms have become commonplace for protecting device data, such as