ﻻ يوجد ملخص باللغة العربية
We study the quantum ground state of ultracold bosons in a two-dimensional square lattice. The bosons interact via the repulsive dipolar interactions and s-wave scattering. The dynamics is described by the extended Bose-Hubbard model including correlated hopping due to the dipolar interactions, the coefficients are found from the second quantized Hamiltonian using the Wannier expansion with realistic parameters. We determine the phase diagram using the Gutzwiller ansatz in the regime where the coefficients of the correlated hopping terms are negative and can interfere with the tunneling due to single-particle effects. We show that this interference gives rise to staggered superfluid and supersolid phases at vanishing kinetic energy, while we identify parameter regions at finite kinetic energy where the phases are incompressible. We compare the results with the phase diagram obtained with the cluster Gutzwiller approach and with the results found in one dimension using DMRG.
The recent advances in creating nearly degenerate quantum dipolar gases in optical lattices are opening the doors for the exploration of equilibrium physics of quantum systems with anisotropic and long-range dipolar interactions. In this paper we stu
We show that the dynamics of cold bosonic atoms in a two-dimensional square optical lattice produced by a bichromatic light-shift potential is described by a Bose-Hubbard model with an additional effective staggered magnetic field. In addition to the
Two-dimensional (2D) systems play a special role in many-body physics. Because of thermal fluctuations, they cannot undergo a conventional phase transition associated to the breaking of a continuous symmetry. Nevertheless they may exhibit a phase tra
We determine the quantum ground state of dipolar bosons in a quasi-one-dimensional optical lattice and interacting via $s$-wave scattering. The Hamiltonian is an extended Bose-Hubbard model which includes hopping terms due to the interactions. We ide
We report on results of Quantum Monte Carlo simulations for bosons in a two dimensional quasi-periodic optical lattice. We study the ground state phase diagram at unity filling and confirm the existence of three phases: superfluid, Mott insulator, an