ﻻ يوجد ملخص باللغة العربية
Anomalous Hall effect (AHE) can be induced by intrinsic mechanism due to the band Berry phase and extrinsic one arising from the impurity scattering. The recently discovered magnetic Weyl semimetal Co3Sn2S2 exhibits a large intrinsic anomalous Hall conductivity (AHC) and a giant anomalous Hall angle (AHA). The predicted energy dependence of the AHC in this material exhibits a plateau at 1000 {Omega}-1 cm-1 and an energy width of 100 meV just below EF, thereby implying that the large intrinsic AHC will not significantly change against small-scale energy disturbances such as slight p-doping. Here, we successfully trigger the extrinsic contribution from alien-atom scattering in addition to the intrinsic one of the pristine material by introducing a small amount of Fe dopant to substitute Co in Co3Sn2S2. Our experimental results show that the AHC and AHA can be prominently enhanced up to 1850 {Omega}-1 cm-1 and 33%, respectively, owing to the synergistic contributions from the intrinsic and extrinsic mechanisms as distinguished by the TYJ model. In particular, the tuned AHA holds a record value in low fields among known magnetic materials. This study opens up a pathway to engineer giant AHE in magnetic Weyl semimetals, thereby potentially advancing the topological spintronics/Weyltronics.
Topological materials have recently attracted considerable attention among materials scientists as their properties are predicted to be protected against perturbations such as lattice distortion and chemical substitution. However, any experimental pr
Recent reports of a large anomalous Hall effect (AHE) in ferromagnetic Weyl semimetals (FM WSM) have led to a resurgence of interest in this enigmatic phenomenon. However, due to a lack of tunable materials, the interplay between the intrinsic mechan
The modulation of the electronic structure by an external magnetic field, which could further control the electronic transport behaviour of a system, is highly desired. Herein, an unconventional anomalous Hall effect (UAHE) was observed during magnet
Topological materials are expected to show distinct transport signatures due to their unique band-inversion character and band-crossing points. However, the intentional modulation of such topological responses by experimentally feasible means is less
The origin of anomalous Hall effect (AHE) in magnetic materials is one of the most intriguing aspect in condensed matter physics and has been controversial for a long time. Recent studies indicate that the intrinsic AHE is closely related to the Berr