ﻻ يوجد ملخص باللغة العربية
Recurrent neural networks (RNNs) are brain-inspired models widely used in machine learning for analyzing sequential data. The present work is a contribution towards a deeper understanding of how RNNs process input signals using the response theory from nonequilibrium statistical mechanics. For a class of continuous-time stochastic RNNs (SRNNs) driven by an input signal, we derive a Volterra type series representation for their output. This representation is interpretable and disentangles the input signal from the SRNN architecture. The kernels of the series are certain recursively defined correlation functions with respect to the unperturbed dynamics that completely determine the output. Exploiting connections of this representation and its implications to rough paths theory, we identify a universal feature -- the response feature, which turns out to be the signature of tensor product of the input signal and a natural support basis. In particular, we show that SRNNs, with only the weights in the readout layer optimized and the weights in the hidden layer kept fixed and not optimized, can be viewed as kernel machines operating on a reproducing kernel Hilbert space associated with the response feature.
We recapitulate the Bayesian formulation of neural network based classifiers and show that, while sampling from the posterior does indeed lead to better generalisation than is obtained by standard optimisation of the cost function, even better perfor
Training an artificial neural network involves an optimization process over the landscape defined by the cost (loss) as a function of the network parameters. We explore these landscapes using optimisation tools developed for potential energy landscap
Recurrent neural networks (RNNs) are powerful architectures to model sequential data, due to their capability to learn short and long-term dependencies between the basic elements of a sequence. Nonetheless, popular tasks such as speech or images reco
We provide a general framework for studying recurrent neural networks (RNNs) trained by injecting noise into hidden states. Specifically, we consider RNNs that can be viewed as discretizations of stochastic differential equations driven by input data
We empirically characterize the performance of discriminative and generative LSTM models for text classification. We find that although RNN-based generative models are more powerful than their bag-of-words ancestors (e.g., they account for conditiona